

Learning from Demonstration: **Autonomous Navigation in Unstructured Environment**

Author: Calvin Chanyoung Chung, JPL Postdoctoral Fellow (347T) Sunggoo Jung (347J), Nitish Dashora*, Valentin Ibars, Osher Lerner*, Dhruv Shah*, Nicholas Rhinehart*, Rohan Thakker (347T), Sergey Levine*, Ali Agha (347J)

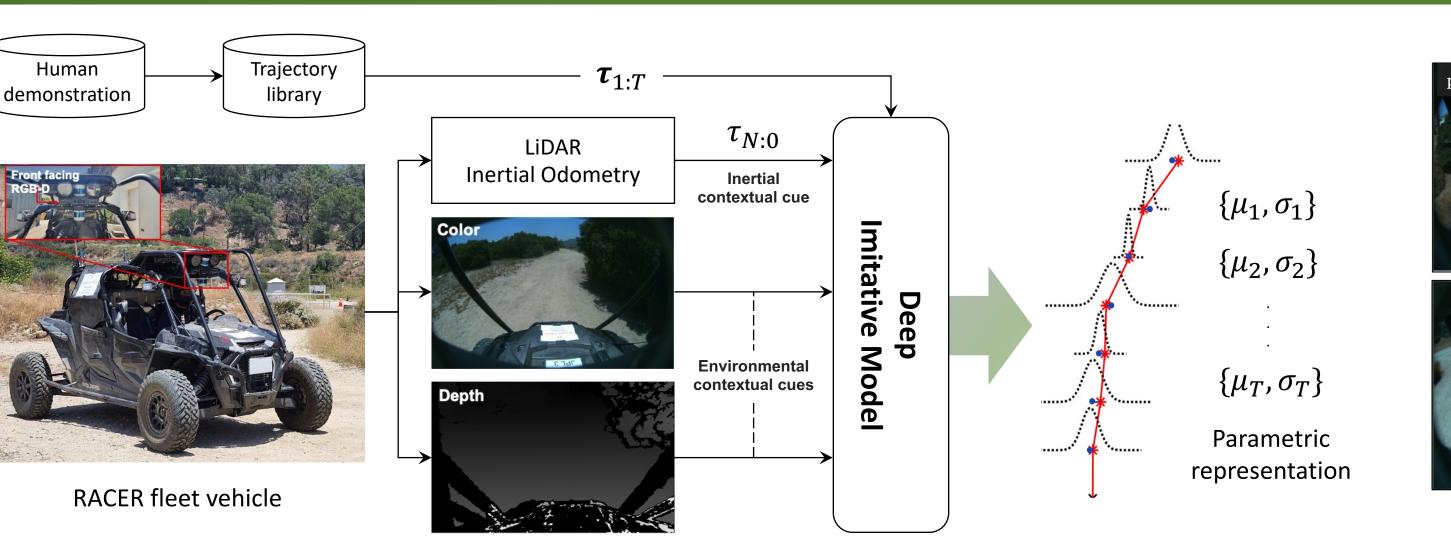
* UC Berkeley

1. BACKGROUND AND APPROACH

Autonomous navigation in offroad/unstructured environments would require Challenges algorithms that can reason beyond geometric notions of traversability.

Addressing this class of problems has a significant impact on various sectors **Benefits** ranging from planetary exploration, to search and rescue, construction, and surveillance and many other field robotics domains.

Project page:


DARPA RACER

Employing Imitation learning (IL) paradigm which can enable the system to learn **Approach** relevant cues directly from prior experience.

2. METHODOLOGY

Proposed Imitation learning pipeline

Dagger implementation

Learning from demonstration

- Imitation-learning based spatial planning.
- Training a conditional density estimator of expert-like spatial trajectories.

Incorporating multiple contexts into planning

- Environmental contextual cues.
- Inertial contextual cues.

Resolving distribution shift

- A well-known issue with offline imitation learning.
- Employing DAgger to improve deployment performance.

4. FUTURE RESEARCH DIRECTION

3. EXPERIMENTAL RESULTS

Experimental setup

Field testing results

Applying Sim-to-Real approach

Helendale Desert

S. Arroyo Seco

Data collection sites

Closed-loop evaluation site: N.Arroyo Seco Trails

Observations from our evaluation. Planned future trajectory in green

Model	$rac{\mathrm{Interventions}}{\mathrm{Minute}}\downarrow$	$\frac{\text{Interventions}}{100\text{m}}\downarrow$
BC, pre-intervention data inclusion Flow, pre-intervention data inclusion	5.179	5.561
BC, post-intervention data inclusion Flow, post-intervention data inclusion	2.479 2.004	2.833 2.197

Quantitively evaluation result.

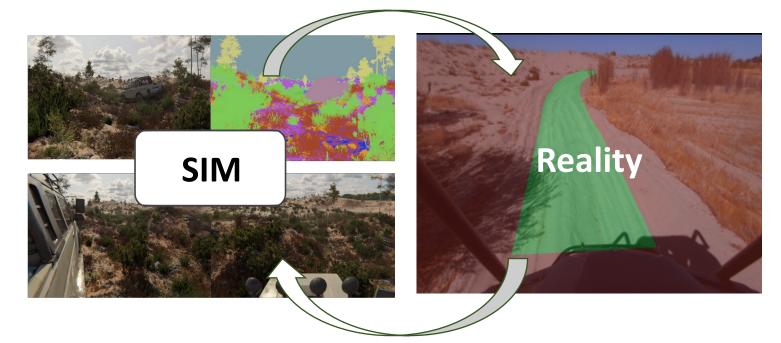
Compared to the generic BC method, our model(Flow) shows about 1.2 times higher performance in terms of human intervention.

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

Poster Number: PRD-T#019 Copyright 2022. All rights reserved.


Publications:

Imitative Models for Passenger-Scale Autonomous Off-Road Driving (submitted to the IEEE ICRA 2023)

Author Contact Information:

Phone: +1-626-590-5825 Email: chanyoung.chung@jpl.nasa.gov

- Collecting dataset from the high-fidelity simulator. ullet
- Sim-to-Real policy transferring for motion planning. \bullet
- Connecting simulation and real-world using shared latent spaces.

