

Predicting seismicity using fault scaling relationships: from Mars to Venus

Leah Sabbeth, JPL Postdoctoral Fellow (3226) Suzanne E. Smrekar (3226), Joann M. Stock (Caltech)

Study & details	Annual Moment Release (Nm)
This study: Cerberus fossae	
segmentation or	6.2×10^{15}
maximum faulting throw 2 k	m 1.7×10^{13}
40 k	m 3.6×10^{15}
Taylor et al. (2013)	
Cerberus Fossae, fault throw	$1.14^{+1.04}_{-0.62} imes 10^{17}$
Stähler et al. (2022)	
Cerberus Fossae, InSight meas.	1.4 to 5.6 \times 10 ¹⁵
Golombek et al. (1992)	
global, surface faulti	1.3×10^{15}
global, lithospheric cooli	ng ~10 ¹⁸
Knapmeyer et al. (2006)	
global, surface faul	ts 3.42×10^{16} to 3.36×10^{20}
Plesa et al. (2018)	
global, thermal mod	el 5.7×10^{16} to 3.9×10^{19}

Above: Length distribution of wrinkle ridges mapped by Bilotti & Suppe (1999) as purple bars, with lines showing lengths from segments (a). Scalar moments calculated from mapped wrinkle ridges (b), with typical distributions, or b-values, for terrestrial regimes.

Solutions for distribution and range of magnitudes:

Above: histograms of wrinkle ridge lengths segmented and limited by throws of 50 km (a), 30 km (b), and 10 km (c). Dashed grey line represents a reference 15 km length. Peaks corresponding to maximum allowed length (grey boxes) are artifacts of our method. Size-frequency diagrams in d-f.

Right: Size-frequency diagram for three maximum faulting heights of 50 km (translucent dark green), 30 km (teal), and 30 km (dark blue). Dashed lines represent slopes of typical terrestrial b-values for normal stress regimes (b=1.1), strike-slip regimes (b=0.9), and thrust regimes (b=0.7) (Schorlemmer et al, 2005) with arbitrary y-intercepts.

Publications:

- Sabbeth, L., Smrekar, S.E., Stock, J.M., AGU 2022, Talk, Abstract # 1097667, Predicting seismicity using fault scaling relationships: from Mars to Venus.
- Sabbeth, L., Smrekar, S.E., Stock, J.M., AGU 2021, Talk, Abstract # 834911, Predicting Venus' Seismicity from surface faulting.
- Sabbeth, L., Smrekar, S.E., Stock, J.M., Seismicity from Cerberus Fossae, Mars, based on fault scaling relationships, anticipated submission 2022.
- Sabbeth, L., Smrekar, S.E., Stock, J.M., Prediction for seismicity from Venusian wrinkle ridges based on fault scaling relationships, anticipated submission 2022.

Author Contact Information:

leah.sabbeth@jpl.nasa.gov | (626)344-5196

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology Pasadena, California Poster Number: PRD-P#016 www.nasa.gov Copyright 2022. All rights reserved.