Monitoring Wildfire Recovery Using Solar-induced Chlorophyll Fluorescence

Author: Manju M Johny (398L), JPL Postdoctoral Fellow Jon Hobbs (398L), Vineet Yadav (398L), Maggie Johnson (398L), Amy Braverman (398L), Hai Nguyen (398L)

Motivation

- > Increase in frequency and severity of wildfires due to climate change.
- ➤ July 27, 2018: Mendocino complex fire burned approx. 410,000 acres (NW California).
- > Important consequences:
 - Conservation
 - Carbon cycle

(Left) Satellite and (Right) On-ground images of the Mendocino complex fire.

Objective: Study the impact of the Mendocino fire and monitor post-fire vegetation recovery.

Solar-induced Fluorescence (SIF)

Proxy for photosynthetic activity.

Gives insight into:

- Crop productivity.
- Changes in vegetation due to climate change and extreme weather.

Data

TROPOspheric Monitoring Instrument (TROPOMI) on board the Copernicus Sentinel-5 Precursor satellite³ (0.2° x 0.2° gridded, weekly SIF).

TROPOMI SIF measurements obtained over the Mendocino forest in California.

Statistical Testing

Is there a difference in SIF between burned & unburned areas?

A hypothesis test helps determine whether observed differences are due to random chance or fundamental differences.

$$H_0: \mu_1(t) = \mu_2(t)$$
 $H_A: \mu_1(t) \neq \mu_2(t)$

Methods

Functional Analysis of Variance (fANOVA) tests whether groups are significantly different using a parametric bootstrap².

- Pre-processing: Convert each SIF time series into functional data (functions) using b-spline smoothing.
- ➤ Black: Observed mean difference in SIF (Burned Unburned).
- ➤ Gray: 'Resample' mean difference in SIF generated under H₀ (if both groups are equal) retaining spatio-temporal dependence.

Functional ANOVA visualization shows significant and prolonged decrease in SIF in the burned areas of the Mendocino forest.

Conclusion

- > Significant decrease in SIF after the fire.
- Photosynthetic activity has not recovered to pre-fire levels
 2 years after the fire, although recovery has started.

Next Steps

Data fusion of SIF from multiple instruments.

Study vegetation recovery, and joint behavior of SIF and atmospheric CO₂.

- Different types of vegetation.
- Different fire intensities.
- Other extreme weather events (drought, flood, etc.)

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

www.nasa.gov

Poster Number: PRD-EB#022 Copyright 2022. All rights reserved.

References:

- 1. Cuevas, A., Febrero, M., & Fraiman, R. (2004). An anova test for functional data. *Computational Statistics & Data Analysis*, 47(1), 111–122. https://doi.org/10.1016/j.csda.2003.10.021.
- 2. Johny, M. M. (2021). Functional ANOVA-Type Methods with Interpretable Visualization for Comparisons among Groups of Time Series. Iowa State University., Ames, Iowa.
- 3. Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., & Landgraf, J. (2018). Global Retrievals of Solar-Induced Chlorophyll Fluorescence With TROPOMI: First Results and Intersensor Comparison to OCO-2. *Geophysical Research*
- Letters, 45(19), 10,456-10,463. https://doi.org/10.1029/2018gl079031.

 4. Wohlfahrt, G., Gerdel, K., Migliavacca, M. et al. Sun-induced fluorescence and gross primary productivity during a heat wave. Sci Rep 8, 14169 (2018). https://doi.org/10.1038/s41598-018-32602-z.

Author Contact Information: manju.m.johny@jpl.nasa.gov