Postdoc Research

National Aeronautics and Space Administration

Steric Height from JPL Cal/Val and SWOT vs. Coastal High-Frequency Radar Comparison **Dual Investigations in the California Current System** Author: Luke Kachelein, JPL Postdoctoral Fellow (329b) Coauthors: Jinbo Wang (329b), Audrey Delpech (329b), Matthew Archer (329b), Lee-Leung Fu (329b), Cal/Val Campaign Team* Jet Propulsion Laboratory, California Institute of Technology

CAL/VAL STERIC HEIGHT

Background Satellite altimetry sea surface height (SSH) has a major contribution from steric height (i.e. from density fluctuations). SWOT oceanography Cal/Val campaign focused on crossover off the US West Coast, including 11 moorings. Profilers in the upper 500 meters capture ~hourly variability in T and S, thus p and hence steric height. See Audrey Delpech's poster for calculating steric height. Spectral and turbulence analysis from Cal/Val period.

Objectives Characterize oceanic quantities (spectra, turbulent structure) relevant to SWOT from *in situ* measurements, then compare SWOT measurements to high-frequency radar, an independent data set.

Observations Steric height anomaly from SIO and PMEL moorings, profilers and fixed CTDs

Preliminary Results Strong tidal component and low-frequency variability, coherent at inertial and semidiurnal tidal frequencies, structure function (*McCaffrey et al. 2015*) suggests slope of wavenumber spectrum in range of -5/3 to -2, less steep than expected for SSH (e.g. Xu and Fu, 2012).

Impact SWOT-scale *in situ* study ascertains spectral properties of steric height, coherence at SWOT scales, and turbulence structure

SWOT SSHA - SCIENCE ORBIT

HF RADAR CURRENTS OVERLAID

- Third cycle in science orbit in progress
- US West Coast is passed over ~5 minutes
- USWC surface currents **u** well sampled by HF radar (*Terrill et al. 2006*)
- Total surface currents contain multitude of signals: is there discernable geostrophic and/or quasi-geostrophic flow?

46

44

42

40

38

36

34

32

0.1

-0.1

-0.2

Cumulative

from

ground tracks

27-Jul-2023 to

02-Sep-2023

West Coast.

expanded at

right at HFR

times within 1

flyover time.

hour of SWOT

-116

-118

Boxes A-C

off the US

(E)

SSHA

2023-08-01 00:00:00

High-Frequency Radar Near-real time vector surface currents • Bragg scattering, radar frequencies of 5-40 MHz • Radial obs. gridded to 6 km (available at 1km and 2km, unused here) • Matched to within 1 hour of SWOT flyover time

DATA

SWOT SSH Anomaly

- Variable
- ssha_karin_2 displayed: "ssh_karin_2
- mean_sea_surface_cnescls
- solid_earth_tide -
- ocean_tide_fes - internal_tide_hret -
- pole_tide
- dac."

Pasadena, California

• Detrended via alongtrack moving mean,

window ~2000 km 30 -128 -126 -124 Significance to JPL/NASA

- 1st half: Calibrates and validates SWOT data using in situ observations, necessary for mission.
- 2nd half: Demonstrates usefulness of SWOT and informs potential future NASA scatterometry missions

- PRELIMINARY RESULTS
- Eddies less than ~100 km across are resolved by HFR coincidental with SSH anomalies.
- Flow consistent with geostrophy is observed perpendicular to $\nabla \eta$
- Unbalanced motion (e.g. diurnal currents and tides) likely strong in region and may explain additional structure in **u**.
- What fraction of surface currents can SWOT predict? Useful for regions inaccessible to land-based HFR.
- Investigate transition scales from quasi-geostrophy to fully unbalanced motion.
- Remove near-inertial and tidal flow using models.
- SWOT produces detailed SSH snapshots near coasts compared to past altimeters, while HFR is only possible along coastlines.

Acknowledgements

This work was presented September 21, 2023 at the SWOT Science Team Meeting in Toulouse, France. It was presented under the same title.

-122

-120

