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Background Objectives

Approach and Results

Benefits to NASA/JPL

Future Work

Development of sample-agnos0c setup to study all poten0al spin-defects Op"cally Detected Magne"c Resonance

ü extremely small (multiple sensors on spacecraft)

ü rad-hard sensor

ü lightweight

ü optional self-calibration

ü no gas leaking (⟷ optically pumped 4He)

ü only 1 coil per direction instead of 3 (⟷ fluxgate)

§ detection of planetary and local 
magnetic fields

§ information about existing, active 
or erstwhile geodynamos

§ insights to inner structures
§ subsurface oceans
§ mining survey (ores)

§ solar wind monitoring

scalar magnetometer 
(strength of field)

&
vector magnetometer 

(direction of field)

§ diamond, silicon carbide (SiC) and hexagonal boron 
nitride (hBN) host a variety of optically accessible 
spin-active quantum centers

§ excellent coherent properties at ambient conditions 
(“qubit at room temperature”)

§ Energy level structure of defects highly sensitive to 
magnetic fields due to Zeeman splitting

⇒	robust quantum magnetometer at room temperature

§ use resonance condition as 
starting point

§ when detuning of energy levels 
occurs: apply compensation field 
to bring resonance back to zero

§ different modulation frequencies in 
each direction reveals magnetic 
field contribution of each direction 

§ compatible with heritage hardware 
based on EDMR (electrically 
detected magnetic resonance)

Future vector mode based on SiC Mag EDMR magnetometerFurther miniaturiza:on steps (ongoing process…):

§ Miniaturized sensor head:
size ⟺ signal quality

§ Miniaturized bias coils:
same coil for RF excitation and bias field
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Ø  high ODMR contrast (10-50%)

Ø  broad peaks

Ø  simple spectrum with only one defect 
orientation (𝑐-axis)

Ø  high frequencies required (3.5GHz)
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Ø  high ODMR contrast (1-10%)

Ø  narrow peaks

Ø  complex spectrum due to different 
defect orientations

Ø  high frequencies required (2.87 GHz)

𝐍𝐕	" in diamond
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𝐕𝐒𝐢" in 4H/6H SiC
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Ø  low ODMR contrast (0.1-0.2%)

Ø  narrow peaks

Ø  simple spectrum with only one defect 
orientation (𝑐-axis)

Ø  low frequencies required (70MHz)
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simplified general energy model
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