

Postdoc Research

# Relative Phasing Transfers Leveraging Low-Thrust : The Deployment of the INCUS Constellation

Kenza Boudad, JPL Postdoctoral Fellow (392M) Quinn Kostelecky (392D), Jon Sims (392M)

#### Background

- INvestigation of Convective UpdraftS (INCUS) is a NASA Earth Venture Mission that will study the relationships between convective mass flux in tropical storms and extreme weather
- Launching in 2027, the constellation will be formed of three low-thrust smallsats located in a common orbital plane in Low Earth Orbit (LEO)
- The constellation will take ground observations with defined time intervals: 30 secs (+/- 10 secs) between observations from INCUS-1 and INCUS-2, and 120 secs (+/- 10 secs) between observations from INCUS-1 and INCUS-3



# Objective

Development of a framework for designing the deployment transfers of the INCUS constellation after ejection from the Launch Vehicle (LV) using lowthrust propulsion and considering various constraints and requirements (LV dispersions, no-thrust periods due to eclipses or commissioning activities, ...)

# Approach

Initial phasing transfer: combination of Spiral Away Maneuvers (SAMs), to set a relative drift rate between Observatories, and Spiral Back Maneuvers (SBMs), to cancel the drift rate at the end of transfer



- Developed Double Spiral Transfer Algorithm provides closed-form solution for thrust directions and thrust durations of low-thrust maneuvers :
  - Based on second-order differential equation modelling the relative intrack phase
  - Modeled: phase acceleration generated by low-thrust, phase rate from differential atmospheric drag between Observatories

### Results

- The developed algorithm was extensively verified with numerical simulations of the initial phasing sequence
- Notional deployment sequence below assumes worst-case scenario with ejection from LV along wrong direction



• **Perturbations** and **constraints**, including differential drag, forced-coast periods, deployment velocity (with errors) are **included in algorithm** 

# Significance of Results/Benefits to NASA/JPL

- Algorithm leveraging closed-form solutions allow rapid design and redesign of initialization sequence in early mission design analysis
- Deployment sequences successfully validated in higher-fidelity numerical simulations with a range of initial conditions and perturbations level

#### **Future Work**

Increase in fidelity in the representation of the deployment sequence, including addition of frozen orbit elements targeting

#### **National Aeronautics and Space Administration**

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

#### www.nasa.gov

Clearance Number: CL#00-0000

Poster Number: PRD-T-015

Copyright 2023. All rights reserved.

# Publications and Acknowledgements:

<u>Relative Phasing and Observations Overlap: Low-Thrust Trajectory Design Options</u> <u>for the INCUS Mission</u>, Boudad, K. K., Kostelecky, Q., 33rd AAS/AIAA Space Flight Mechanics Meeting, Austin, TX, January 2023

10

Many thanks to the INCUS Flight System Team for their help and feedback!

# **Author Contact Information:**

kenza.boudad@jpl.nasa.gov

| Notional transfer characteristics (sa | atisfy TOF < 6 weeks req.) |
|---------------------------------------|----------------------------|
|---------------------------------------|----------------------------|

30

20

Time [day]

| Observatory            | INCUS-1 | INCUS-2 | INCUS-3 |
|------------------------|---------|---------|---------|
| Thrust profile         | -1, 1   | -1, 1   | 1, -1   |
| TOF (days)             | 39.8    | 40.7    | 41.7    |
| Thrusting time (hours) | 6.49    | 5.25    | 5.23    |
| ΔV (m/s)               | 0.449   | 0.364   | 0.362   |
| Propellant used (gr)   | 7.26    | 5.88    | 5.86    |

