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1. Introduction

NISAR The upcoming NASA's NISAR mission carries an L-band wide-
swath Synthetic Aperture Radar (SAR). L-band SAR interferometry can
measure deformation with much lower noise level, while wide-swath has
the benefit of imaging a large area and reducing revisit time.

Problem 1. Like regular SAR interferometry, wide-swath SAR
interferometry also only measures Line-of-Sight (LOS) deformation on
the ground. Azimuth (approximately north-south) deformation is critical
for measuring 3-D deformation.

2. L-band SAR is more sensitive to ionosphere. lonosphere causes
azimuth shift in the azimuth deformation measurement. It should be
corrected to improve the azimuth measurement accuracy.

Objective Our objective is to use an L-band wide-swath SAR to
measure azimuth deformation and do ionosphere correction. We use L-
band wide-swath SAR data acquired by JAXA's ALOS-2 mission to
explore NISAR'’s potential of measuring large-area azimuth deformation.

2. Method

Azimuth Deformation ALOS-2 uses burst technique to acquire wide-
swath image. A target on the ground can be imaged by several bursts.
Each burst can measure the azimuth deformation projected onto its
LOS (such as x,). Azimuth deformation x can be calculated by combining
two bursts.

burst 1 burst 2

satellite orbit

1onosphere

LOS 1 LOS 2

Earth's surface

/ target

lonosphere Correction The ionosphere shift in the azimuth
deformation measurement can be calculated by

X, _ Vg a¢ion,d
" AxK . 9n

where V, is the velocity of the radar footprint on the ground, K is the
azimuth frequency modulation rate, and 1 is the azimuth time.

lonosphere phase delay P..na is inversely proportional to radar
frequency. It can be estimated using a split-spectrum method.
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3. Result

2015 Mw7.8 Nepal Earthquake The azimuth deformation is very
different from the LOS deformation measured by regular SAR
interferometry. The maximum azimuth deformation caused by this

earthquake is up to 2.6 m.
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2016 Mw7.8 New Zealand Earthquake From azimuth deformation
map, a number of known and unknown faults can be identified, which is
important to the study of this very complex earthquake.
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4. Conclusion

» For the first time, azimuth deformation of a large earthquake is
completely measured by L-band wide-swath SAR interferometry.

» Results have already contributed to earthquake research (Hamling et
al., 2017, Science).

» With SweepSAR technology and an extra range band, NISAR should
be able to achieve much better accuracy than ALOS-2.
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Introduction
Closing the water balance in most of the region is exceedingly difficult due to the
sparsity of field observation, large uncertainties in satellite derived estimates and
model limitation. The study integrated multiple NASA satellite missions in order to
compute total water storage (TWS) of the Aral Sea and its basin and analyzed the
Aral Sea desiccation.

Objective
« Evaporation estimation from the Aral Sea water body

 Runoff estimation into the selected sub basin

Study area
The Aral Sea has become a major ecological disaster during the 20th century, due
to largescale irrigation abstraction from its two primary inflow Amu Darya and Syr
Darya. The Figure-1 shows the major canal irrigation region of the Aral Sea basin.
The yellow region in the Figure-1 shows the analyzed Aral Sea sub-basin,
demarcated based on the GRACE gravity field missions mascon grid.
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Figure 1: Study area. R1 is the derived total drainage from the Amu Darya and the Syr Darya into
the selected Aral Sea sub-basin (yellow region) and R2 is the total drainage into the Aral Sea
waterbody obtained from in-situ observations.

Method

- The Aral Sea water volume is estimated at a monthly time steps by a
combination of the Landsat and altimetry (Jason 1 and Jason 2) observations,
using truncated pyramid method.

* Monthly differential of the lake volume variation is used as an constrain to the
integrated hydrological fluxes acting on the lake, in order to estimate
evaporation.

E =P+ R2 — 0lake volume

* Further, the study is extended to the irrigated belt of the Aral Sea basin to
evaluate the impact on runoff. At a sub basin level, the derivative of GRACE
based TWS (0G) is used as an constrain to estimate a runoff into the basin (R1)
from the other hydrological fluxes.

* R1=0G-(P-ET-R2)

* In order to assess the uncertainties in the input fluxes precipitation data from
TRMM, GPCC, ERA and GPCC and evaporation estimations from GLDAS,
WGHM and MOD16 has been analyzed.
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Figure 2. The Aral Sea waterbody: MODIS based potential evaporation is compared with the
evaporation estimates back calculated from the TWS of the lake
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Figure 3: The Aral Sea sub-basin: R1 estimation from the GRACE based TWS and the other
hydrological fluxes (for e.g. ET from WGHM and P from TRMM)

Results

« The Aral Sea water body volumetric variation has 90% correlation with the net
hydrological fluxes. All precipitation datasets (TRMM, GPCP, GPCC, ERA)
have very high correlation.

* The estimated E from the TWS and MODIS showed good long-term
agreement (77% correlation). However, summer peaks are over estimated by
the MODIS based potential evaporation of the waterbody.

« At a sub-basin level P-ET has 82% correlation with the dG, which shows that
major mass loss trend observed by GRACE came from P-ET.

Summary

« The TWS of the lake is computed by altimetry based water height and high
resolution Landsat data. The lake TWS is constrained by in-situ runoff to
compute E estimate.

 The figure-2 indicates that ET is the most uncertain parameter in this region
and can be back calculated from the TWS. P has limited contribution over the
lake.

« The runoff estimation method showed in figure-3 can be used to estimate long
term variations in runofft.
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Introduction

Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and
contributing significantly to both carbon emissions and changes in surface albedo. The
socioeconomic impacts of wildfire activities are also significant with wildfire activity results in
billions of dollars of losses every year. Numerous studies have aimed to predict the likelihood of
fire danger, but few studies use remote sensing data to map fire danger at scales commensurate
with regional management decisions (e.g., deployment of resources nationally throughout fire
season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And
Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared
Sounder (AIRS) vapor pressure deficit, and landcover products, along with US Forest Service
historical fire activity data to generate probabilistic monthly fire potential maps in the United
States. These maps can be useful in not only government operational allocation of fire
management resources, but also improving understanding of the Earth System and how it i1s
changing in order to refine predictions of fire extremes.

Datasets

Pre-season Jan-Apr GRACE-assimilated Soil Moisture

1-month lead AIRS Vapor Pressure Deficit (VPD)

Monthly fire counts from USDA Forest Service’s Fire Program Analysis Fire-occurance
database (FPA FOD)

USGS National land-cover databse

Methodology

* First, we develop a 2-D space of SM and VPD values for all land cover types deciduous,
evergreen, shrub land, herbaceous, and wetland. The space splits each variable into 20 equal-
sized ranges. For each bin in the space , we then calculate:

toral fire occurances

p(fire) =

total sm VPD combinations

One look-up table i1s generated for each land-cover type and each month. Once a real-time SM ad
VPD observation becomes available, the corresponding look-up table will be utilized to predict the
likelithood of fire occurrence. Figure 1 shows look-up tables generated using Jan-Apr SM and July
VPD observations for predicting the likelihood of fire occurrence in August.
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Results

Figure 2 shows Jan-Apr 2012 SM and July 2012 VPD observations, observed number of fire
occurrences and predicted likelithood of fire occurrence for August 2012. The first row shows Jan-Apr
2012 Soil Moisture and July 2012 VPD observations. The second row shows the observed and
predicted likelihood of fire occurrences for August 2012. As shown , observed and predicted maps
show consistent patterns in the entire United States.
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Figure 3 shows the validation of the model framework across different landcover and GACC
types. Figure 3a shows GACC types across the US. Figure 3b shows the time series of monthly
average fire observations and simulations in GACC Eastern. Figure 3¢ shows the total number
of fire observations and simulations across various landcover types. Figure 4d shows the spatial
map of RMSE between simulations and observations.
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Conclusion

* This study used January through April Soil Moisture and 1-month leading time VPD data to
predict the likelithood of monthly fire occurrences.

* We have validated the model across various landcover and GACC types. The result show
that the model can potentially predict the likelihood of fire occurrences with relatively small
margin of errors.

* These maps can be useful in not only government operational allocation of fire management
resources, but also improving understanding of the Earth System and how it 1s changing in

order to refine predictions of fire extremes

* The future work includes investigating other hydrologic variables including vegetation
greenness and precipitation data to improve the model performance.
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|. Introduction

e The mountain snowpack is an important component of the hydrologic cycle and
an essential water resource for communities across the globe.

1. Objective « Improve snow water equivalent (SWE) estimation over the Western U.S. (WUS)
using data assimilation (DA) of space-borne data and high-resolution hydrologic

modeling.

* Being able to correctly estimate snow Is not only a great necessity for scientists,

water resource managers and decision makers, but also a challenge.

» \Western States Water Mission (JPL):

« Goal: provide accurate and accessible water availability data products for the
U.S. western states to water applications stakeholders and the scientific

community through a convenient user interface.

* Leverage space and air-borne NASA data products in conjunction with
hydrologic models to improve water availability estimation.
« Estimating snow amount Is a crucial component of achieving these goals

WSWM

Terra (MODIS)

1. Observations ‘

Data:

Assimilation: MODSCAG (MODIS Snow Covered

Area and Grain Size) - daily snow cover fraction;

native resolution: 500 m

Validation: ASO (Airborne Snow Observatory)

SWE; select dates during spring season; native
resolution: 50 m

V. Results

—> Model captures SWE temporal variability well: good
temporal correlations vs in-situ (SNOTEL) data

Cell Energy and Moisture Fluxes  Grid Cell Vegetation Coverage

Challenge

[11. Methodology

Domain: Tuolumne River Basin, CA

Spatial resolution: 1.75 km x 1.75 km (~ 3 km?)

Temporal coverage: WY 2013-2016, daily time step (snow model, 3h step)
DA: Local Ensemble Transform Kalman Filter. To avoid spurious correlations
during early accumulation season, assimilation window limited to Jan-Jul.

3. Estimates with uncertainties

2. High Resolution Modeling ‘

Models:
VIC (Variable Infiltration Capacity, U. Washington, Liang et al. (1994))
semi-distributed macro-scale hydrologic model
RHEAS software (JPL, K. Andreadis) — snow DA (based on Hunt et al. (2007)):

e Calculates SWE and SC climatology once (here, 1981-2010)

 Random sampling of climatology to construct background ensemble

« Computes optimal weights between SC background state and SC observations
given model and observations errors (background perturbation errors and obs
errors)

» Weights used to updates SWE state variable

—> Assimilation improves SWE spatial distribution wrt ASO

—> Model underestimates peak SWE in average and wet years Model: no assim Model: assim Observations: ASO
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V. Conclusions/Discussion ST - B E :

« New method (Local Ensemble Transform Kalman Filter, LETKF) tested for snow DA - - | - i
« Benefit of this LETKEF: its relative simplicity, ease of implementation & ¥ -

computational efficiency (parallelization, 1-time climatology)
e Assessed over smaller area, but can be easily scaled up to larger domain
« Validate DA method against ASO SWE product: new-most studies evaluate
against station (snow pillows) data, which don’t capture spatial distribution and

variability.

e Assimilation improves SWE estimates over open-loop (no assim) case when

compared with observations, both temporally and spatially.

* Model preforms better during drier years (vs average years), and during the

melting season (vs accumulation).
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Figure 3. SWE [mm] spatial maps, averaged over select spring dates when ASO is
available: model no assimilation (left), model with MODSCAG assimilation (center), and
ASO (right). ASO data (50 m) regridded/aggregated to VIC spatial resolution (1.75 km).

* Model underestimates peak SWE during average snow years (e.g.
WY 2016) but performs well during drier (drought) years.
— e Underestimation of peak SWE likely due to model
parameterization - inadequate, simplistic snow depletion
curve (SDC).

« Assimilating SC to updated SWE remains a challenge, especially
when near-real time updates are desirable (vs reanalysis methods)

o« WSWM successfully (1) developed framework and (ii) tested new
snow DA for multi-year period (17 years) over large area
(western US) at high resolution (3 km?), overcoming
computational challenges associated with such task.
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4. Interactive data analytics

Yy

Assimilating snow cover (SC) observations to update SWE estimates.
Instantaneous SC does not provide that much information on instantaneous SWE

« Evaluate against spatially distributed Airborne Snow Observatory (ASO) data.

« Batch smoother method desirable for snow DA, considers evolution of SC
throughout the season to inform SWE updates (vs sequential filter method).

o Compare “assimilation” and “no assimilation” cases against observations to
assess iImprovement.

o Goal of work shown here: evaluate this method on smaller river basins (where
ASO available) then expand and use method on larger area (WUS).

5. USERS

Stakeholders
Water resource managers
Policy makers

Scientists

Full WSWM domain &

Tuolumne RB domain in this study

Finding the appropriate DA implementation
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Fig 1. SWE [mm] time series for WY 2016; assimilation window sensitivity studies.
Bottom: schematic showing temporal implementation of assimilation method.

= More SWE throughout all elevation bands
= |ndry years, deeper snowpack, and more snow at mid & high elevations

= |naverage year, SWE distributed more evenly across elevation bands

instead of clustered at high elevations
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Figure 4. SWE [mm] with respect to elevation. Model data selected for ASO dates only.
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Objectives

1. Develop ambient operating temperature dependent
calibrations for retrieving LST without the use of
spotmeter for long term field deployment for
monitoring vegetation.

2. Incorporate LST measurements and flux tower observations into physically based energy balance
frameworks for characterizing the diurnal cycle of evapotranspiration (ET) over agricultural

Fig. 1. JPL thermal chamber experimental results
showing a consistent pattern of ambient -temperature
dependent instability across a range of blackbody
temperatures.

systems.
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Fig.2 (Left) Experimental results showing the relationship (calibration) between the mean FPA DN counts and blackbody
temperatures for a range of ambient sensor temperatures. (Right) Results showing the non-linear relationships between the
mean standard deviation (uncertainty) of FPA DN counts and blackbody temperatures for a range of ambient sensor
temperatures.
1. FPA-Temperature = Mean Calibration + FPA Non-uniformity correction (each term = f(amb temp))
2. Maximum value of ambient temperature dependent FPA NUC ~ = 1°C.

3. Independent validation show error in pixel wise temperature prediction from calibration is = 1°C.
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4. Field Campaign
Russell Ranch

1. Data acquisition at Russell
Ranch, Davis, CA on 27t
April 2017 - capturing
diurnal variability in LST.

2. Tetracam sensor (6band
VNIR + FLIR Tau-2 thermal
channel).

3. UAV flights over targets
(metal plates and tarps) and
crop validation plots to T i A
capture the diurnal variability Zoagt |
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thermal imagery. - ! : 1< S ; | v IP:
5. Imagery 1s orthorectified and == . k - _ES ' o

mosaicked together.

6. Imagery represents the e

warming and cooling trends Fig.3 N-S transects over target and crop validation plots at RR agricultural sites
of the target and crops well in Davis, CA. The acquisition times are 9:30am (morning), 12:00 pm (afternoon)
' and 6:15 pm (evening).
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Fig. 4 Scatterplots representing the UAV measured target temperatures (panel-a) and crop temperatures (panel-b) versus
corresponding IRT ground measurements for 9 flights spanning the April, 26 (D1) and 27 (D2), 2017. The errorbars
represent the one standard deviation uncertainty along both x and y axes. Panel-c boxplots showing the diurnal variation
in the spatial distribution of crop temperatures as measured from UAV acquisitions for April 27, 2017.

6. Computing Evapotranspiration

ok

The Surface Temperature Initiated Closure (STIC) model 1s used for computing ET Fluxes.

2. STIC provides a physically based surface energy balance framework for simultaneous retrieval of
the surface and atmospheric conductance and surface energy fluxes (latent and sensible heat) by
physically integrating radiometric surface temperature into the Penman-Monteith equation.
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7. Spatial and Diurnal 5 =
Variation in ET
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Fig. 6 Results of ET computation from data
collected at Sweeney Corn site in Ames, lowa.
Panel-a shows the NDVI computed using the
850nm and 650nm channels of the Tetracam.
Panel-b shows the derived LST using the
11000 nm (center wavelength) co-registered
FLIR Tau-2 channel and Panel —c shows the
ET computed using LST and flux tower
observations on site. The imagery was
collected on August 6, 2016 at 11:30 am local
time.

The spatial structure of the corn rows are
clearly observed as well as the distinction
between grassy areas and corn.

Panel-d shows the diurnal variability in ET
captured from UAV with the STIC modeled

and flux-tower observed values for August 6,
2016.

8. Conclusions

0 0z 04 06 08 1
ET Tower (mm hr'l)

Fig. 5 Panel-a shows the seasonal
variation of 2016 growing season ET
fluxes as computed with STIC and its
comparison with flux tower
observations for JPL-corn site, Ames,
lowa.
Panel-b shows the comparison of STIC
modeled and tower observed estimates.
Panel-c demonstrates the capabilities

of STIC in capturing the diurnal cycle
of ET very well.
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1. The developed calibration methodology allows accurate retrieval of LST using low cost
microbolometer sensors from sUAV platforms with an error = 1°C.
2. We demonstrate the applicability of STIC for computing ET from radiometric LST observations and

capturing the diurnal variability of ET.

This methodology using sUAS could be used for validating the diurnal cycle of ET and LST from

ECOSTRESS mission in future.
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How does your terrestrial model stack up in the Arctic-Boreal Region?

Author: Eric Stofferahn (329G-Caltech)
Co-Authors: Joshua Fisher (329G), Daniel Hayes (U. Maine), Deborah Huntzinger
(Northern Arizona), Christopher Schwalm (Woods Hole), Wouter Hantson (U. Maine)

Motivation Benchmarking System Datasets

Indicator

- I
\ - - :.-i ..- .:
Addr ess Key ‘BOVE Va rla b |e Burned Area Aerosol /
Gas Release
J
Carbon Disturbance Ecosystem Hydrology Permafrost
Biogeochemicalcycles 5 :!L (T it (]
Observation S
Benchmark Informs Models of Uncertainties Benchmark Identifies Areas of Observational Need

Models and Observations Drive Benchmark

« How are the magnitudes, fates, and land-atmosphere exchanges of carbon
pools responding to environmental change, and what are the biogeochemical
mechanisms driving these changes?
<

Model Output

Observations guide new Model Parameterizations and Processes Observations

« What processes are contributing to changes in disturbance regimes and what N - -
are the impacts of these changes? . . g S e
P 8 The benchmarking system is based upon ( OS | R E SS 3 ?;rf 2
» How are flora and fauna responding to changes in biotic and abiotic ILAMB and will eventually be  TEEEE Y AN =

ECOSTRESS

conditions, and what are the impacts on ecosystem structure and function?

incorporated into ILAMB. The system

» What are the causes and consequences of changes in the hydrologic system, will reside on the ABoVE Science Cloud, -
specifically the amount, temporal distribution, and discharge of surface and enab]ing fast access to current and future G F‘J‘-&' l . J / J
subsurface water?
ABOVE data as well as other datasets
« What processes are controlling changes in the distribution and properties of relevant to the ABOVE re gion,
permafrost and what are the impacts of these changes? Examples of dataset observation sources
Process BurnedArea/GFED3 Initialized
BurnedArea/GFED4 Initialized
‘BQ-VE Model Upload Running model-confrontation pairs...
( N
BurnedArea/GFED4 CLM45 Completed 17.4 s
Model Name: CLM BurnedArea/GFED3 CLM45 Completed 45.8 s
activelayer = { : : ;
BenChmarking free;((efgzvlv.ing;:;i;ali:éit}).show("blind,"‘, {"direction": "up"}, 1100).de1a‘y(800):hide("blind", {"direction": ™down"}, 1100);
Model Version: 43 User Uploads ™ | 4 System Calculates L |
Model to Scores, Makes S mbiapermatrost 1 e
Benchmarking Graphics, and testart: functigh)
Ok Model File(s): Browse... No files selected. System Builds Custom igIlzgiiﬁ::;giézii;ll?g);?h)ié;?(;?To(0,0.7);
e, ) e w S Webpage ;téi;:i‘;:ﬁﬁ::":\(’;{ = setInterval(this.freezethaw, 3000);
upload ﬁles(;r;r::‘\t:r[i)etso)'12 different ecog Al {
start: function() {
biggrass = grasscode.attachgrass('start',null);
;"cop: function() { . .
\ ) ‘ gSZE;OS;::Eg?gi;izj\(l;}?arInterval(blggrass.1nterva1)),
. :;:estart: function() {
biggrass = grasscode.attachgrass('restart',biggrass);
ééstroy: function() {
User Updates . E:;;;Zzz?é‘)c;.clearRect(0,0,biggrass.canvas.width,biggrass.canvas.height);
User Vlews ‘ delete biggrass.garden;
Model Based on o)
Results on )
BenChmark Custom Webpage function s‘Farttreeanimation(%nstring) . .
Results S8 singtr nge: L Lyadient stop aningte’) 1] beginElomnt ()
$('#'+instring+'treepath').css("animation-play-state", "running");
AB_Q_VE Benchmarking Results: CLM
Overall Score 0.6
Hydrology Score 0.6
Evapotranspiration Score
 MODIS
( 7Bias Mapg::\:aﬁootl)r:gspiration | 7 MODIE Bcore s ]
\ 0.6
|
|
Functional Benchmarks |
|
The benchmarking system will utilize functional
benchmarks to explore the relationship of a given
variable on one or more driver variables. This allows
modelers to determine if their model is accurately
representing the inter-dependence of these key
Arctic processes.
National Aeronautics and Space Administration
Author Affiliations:
Jet Propulsion Laboratory « California Institute of Technology
California Institute of Technology » University of Maine
. . * Northern Arizona University
Pasadena’ California * Woods Hole Research Center
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Scaling solar-induced fluorescence (SIF) from the leaf to the satellite

Author: Troy Magney (329G)
Christian Frankenberg (Caltech), Philipp Koehler (Caltech), Ying Sun (Cornell),
Katja Grossman (UCLA), Jochen Stutz (UCLA), Joshua Fisher (329G)

Introduction:
Global SIF as a proxy for photosynthesis?

* Recent advances have been made in the retrieval Prlmary ObjECtIVGSZ
of solar-induced chloroph)_/ll fluqres_c_ence (SIF) _ : chloroplast.
from space and could provide a significant step « Leaf — changes in spectral shape of SIF signal
towards mapping instantaneous plant Ty
photosynthesis across space and time. « Tower — diurnal and seasonal changes in SIF signal
* While these advances are promising, there are still
many unresolved issues related to the spatial, » Airborne — spatial changes in SIF signal
spectral, and temporal scale-change problem, . .‘ ; : : . )
making interpretation of the mechanisms N L E— — . ; ;
driving the SIF signal from space challenging. 0.100 0.200 0.300 0.400 0.500 0.600 0700 0.800 0.900 1.000 1.100 1.200 1.300 1.400 - Satellite — improved interpretation of SIF signal
Frankenberg et al., 2011; Joiner et al., 2011
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|_eaf approach:
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» Measure photosynthesis, active, i ,i
and passive fluorescence 8 8
simultaneously. = =

1] [ )]

] S

« Over arange of physiological
conditions, species, and
environments.

« Analyze changes in spectral

shape coincident with changes P i : :
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Schematic of gas-exchange, active/passive fluorescence system: Magney et al., 2017
- Installation: Niwot Ridge, CO Diurnal data from La Selva, Costa Rica
Towe r a'p p ro a'C h - 2500 PAR 162: Phylodendron rat;!ial:ur.?!_[:I
* Build five spectrometers to 2 4 é 100
. £ #® ¥
measure SIF using the £ 1000 g ;g}% .
Fraunhofer approach 500 2 ﬁ,ﬁgf £, '
. Currently Installed in Costa 5 08 12 15 19 5 W5 08 12 15 19 : , ‘ _ N :
Rica, lowa (2), and Colorado. 6 Castilaclastica 6 Vismia macrophylla Install: La Selva Biologigal Research Station, Costa Rigge
* Collect species specific and JE ; )
spatially varying information g o J o Conclusions:
on plant function (SIF, other S 2 P E |0 2 9 . —
P ) ( 2 ;%.é”z ﬁiﬁ; « Changes in SIF are primarily driven by absorbed
VIs) every 15 minutes over the I = < PP . £ 5% ) : .
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Grossmann, et al., in prep.  Currently QA/QC data from the four sites.
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High-resolution mapping of tidal marsh distribution and

biomass with L-band radar
Nathan Thomas 334-F

Marc Simard 334-F

1. INTRODUCTION 5. BIOMASS MAPS
 Tidal marshes provide important ecosystem services such as carbon storage, coastal protection S. il 152 212 il e i S
and biodiversity - . N
* High resolution maps of extent and biomass are required for reporting to UN 1nitiatives (e.g., : \q\ May 2015 biomass
Intergovernmental Panel on Climate Change (IPCC)) but are largely unavailable y %
* Anthropogenic pressures such as coastal development are causing the loss of tidal marshes and S SO MR 1
their associated ecosystem services g CosTE | \/\ . g
2. OBJECTIVE ol W -
* Map Louisiana tidal marsh distribution and biomass to satisty IPCC reporting requirements w = Wl
* Derive a high-resolution map of tidal marsh extent o e N,
* Test the capacity for biomass mapping and monitoring with JPL airborne radar 2 o
3. MAPPING TIDAL MARSH EXTENT Miay 2015 Biomass (g/m"2)
* Landsat 8 OLI optical satellite imagery B <= 100
* Scenes acquired August 8" and August 2512015 and corrected for temporal/atmospheric effects . E fo0 2000 S
e Subset to the parishes of St. Mary’s and Terrebonne e 10002000 7
* C(lassified using a Random Forests machine learning algorithm using image segmentation via free 8000 - 12000
and open source software (Fig. 1, Table 1) 12000 - 25000 wIEE .
* Training provided by in-situ coastal monitoring stations B 25000 - 30000 e . e e
625|000 650|000 675|000 700|OOO 725|000 7501000 é_ I 30000 - 40000 _§
91.75 -91.50 91.25 -91.00 -90.75 -90.50
Fig 3. May 2015 biomass map derived from the relationship in Fig 2.
§ § -911.75 -911.50 -911.25 -911.00
8 . October 2016 biomass A
g Marsh Classes < & | oetober 3
Q7 ] Emergent/Deltaic | 1' B October 2016 Biomass (g/m*2)
® - :;zsstl\/larsh 0 10 20 km . el S I 100 - 500
I Leaf Marsh ] -~ - g 17 500 - 1000
: : , [ , ] 1000 - 2000
625000 650000 675000 700000 725000 750000 2000 - 8000
Fig. 1 Landsat 8 classification of Louisiana tidal marsh extent ‘ 2900 12000
. 18000 - 25000
1 25000 - 30000 10
4. TIDAL MARSH BIOMASS o | I 30000 - 40000 N — ' N
* NASA JPL Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) imagery o | | | | i
. SCCI.IGS acqulred May 20 1.5 and. Octpber 2016 : ] . o Fig 4. October 2811'560 biomass map derives’:iztérom the relationshipgigoFig 2.
* Radiometric and geometric calibration and merging of adjacent flightlines
* Field data acquired May and September 2015 (low and peak biomass) 6. SUMMARY OF RESULTS
* Relationships derived between UAVSAR HYV polarized backscatter and field biomass data (Fig. 2)
* May and September ficld data were combined to derive relationships with each UAVSAR scene Table 1. Summary of tidal marsh class are and seasonal biomass values
* Backscatter increased with biomass until saturation occurred at high biomass values Area Oct Biomass (t) | May Biomass (t) | Common Extent Difference (t)
* Biomass maps (Fig 3 and Fig 4; Table 1) created by applying derived relationship to UAVSAR (km?)
HYV polarized scenes Grass 1,339 608,746 1,700,874 92,431
Backscatter V Biomass Leaf 507 890,113 828,760 286,822
- ' ' ' ' ' ' ' Forest 1,288 6,829,973 18,910,317 N/A
Emergent/Delta 76 131,508 85,368 109,972
10l ] * Increase in biomass in October, coincident with increased productivity of the marsh vegetation
* Grass marshes are the dominant marsh type
S * Seaward increase in the Wax Lake and Achafalaya deltas during peak biomass
g . * Smallest biomass values amongst the extensive inundated grass marshes
L _15} |
g 7. DELIVERABLES
2 * Anovel map of Louisiana tidal marsh extent at high resolution, providing a new and up-to-date baseline
é =20 ’ * Created previously unavailable very high resolution maps of seasonal biomass which provide greater
o understanding of the seasonal change in marsh productivity as required for monitoring by the IPCC
° * Successfully quantified biomass using JPL UAVSAR, demonstrating the capability for biomass/carbon
_o5 ° y=1.76In(z) — 29.274 | accounting of coastal marsh ecosystems
° R?=0.6865
° 8. FURTHER WORK
_30 . 1 1 1 1 1 1 e Simulations for NASA-ISRO SAR
10000 0 10000 20000 30000 40000 50000 60000 70000 e ALOS-2/Landsat
, , , Biomass (gm?) * (Carbon estimations and seasonal changes
Fig. 2 Relationship between field biomass data and UAVSAR backscatter . Estimations of error propagation
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Mapping Forest Height Using PolINnSAR and Lidar Fusion

Michael Denbina (334F)
Marc Simard (334F)

1. Introduction

*\We used airborne remote sensing data from NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR) and Land, Vegetation, & Ice Sensor (LVIS) lidar to map forest canopy height for study areas in
the country of Gabon. These data were collected as part of NASA’s AfriSAR campaign in 2016.

*\We developed a new machine learning-based method to perform data fusion of radar and lidar forest height
estimates. The result has the wide coverage area and high spatial resolution of UAVSAR, but with
Improved accuracy compared to a purely radar-based approach. The forest height maps for the two study
areas are shown in Fig. 1.

*ODbtaining high resolution maps of forest height is important for understanding the ecosystem carbon
budget, and for quantifying the effects of deforestation and forest growth. Forest biomass can be estimated
from forest height using allometric equations derived from field measurements.

*Developing methods for fusion of radar and lidar data is vital to make optimum use of data from future
spaceborne missions, such as the NASA-ISRO SAR (NISAR) and the Global Ecosystems Dynamics
Investigation (GEDI) lidar.

0 5 10 15 20km
BN B

Om

Fig. 1. Forest height maps created using UAVSAR and LVIS machine learning
fusion for Akanda National Park (North) and Pongara National Park (South),
Gabon. Overlaid on Landsat-8 imagery, available from U.S. Geological Survey.

2. Methods

*\We estimate forest height from the UAVSAR data using polarimetric synthetic aperture radar interferometry (PolInSAR) and the
random volume over ground (RVoG) forest model, which relates the physical characteristics of the forest to the radar observations.

For multi-baseline data (i.e., greater than two different flight tracks), we can estimate multiple independent forest height estimates
from the various baselines which must then be weighted or selected in order to obtain a single forest height for each radar image
pixel. The UAVSAR data contained a large number of repeat passes (5 for Pongara, 9 for Akanda), making baseline selection a
vital step in the forest height estimation process.

*\\e tackled this baseline selection problem using a support vector machine (SVM) classifier with a linear kernel function, using a
large feature set which contained a variety of radar-derived metrics based on the PolInSAR coherences and coherence region shape,
viewing and terrain geometry, and radar backscatter. A flowchart of the method is shown in Fig. 2.

*The SVM was trained using a sparse subset of the LVIS relative height 100 (RH100) data with 250 m spatial separation between
samples. This lidar sampling density is similar to what will be expected from future spaceborne lidar missions, such as GEDI. The
remainder of the LVIS data was used for validation (Fig. 3).
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Dataset Independently On Each UAVSAR
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\_

\_

Fusion
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Training
Data

Forest
Canopy
Height for
Baseline N

Fig 2. Flowchart of the proposed forest height fusion method.
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Fig. 3. Density plots of forest height using the proposed fusion method vs. LVIS RH100 forest
height. Left: Akanda National Park (Northern area in Fig. 1). Right: Pongara National Park
(Southern area in Fig. 1).

3. Conclusions

*Developed a new method for fusion of PolINSAR and lidar data in order to generate more accurate PolInSAR forest height estimates, with a high spatial resolution (30 m) and a wide coverage area (22 km swath). The method
considers the PolInSAR baseline selection process as a supervised classification problem, which we perform using a support vector machine classifier trained with sparsely distributed lidar-derived forest heights.

*Produced forest height maps for two national parks in the country of Gabon. Results validated using LVIS samples excluded from the data fusion procedure, with RMSE of 4.99 m in the Akanda National Park study area, and 6.11 m in the
Pongara National Park study area. For comparison, we also performed baseline selection using standard radar-derived data quality metrics (coherence region eccentricity, and expected phase center height variance), but these methods resulted in

less accurate forest height estimates (RMSE values of 8.47 m for Akanda and 7.69 m for Pongara).

*Results demonstrate the potential for fusion of PolInSAR and spaceborne lidar data. Lidar sample spacing of 250 to 500 m is sufficient for training the SVM classifier. Data from the Global Ecosystem Dynamics Investigation (GEDI) lidar
will satisfy this requirement, though the data is expected to be noisier than the LVIS airborne lidar data used in this study.

*Next Steps: Continue to refine methodology, and apply the method to other datasets and study areas. Validate using field data in Pongara National Park. Estimate biomass from forest height maps using allometric equations.

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Copyright 2017. All rights reserved.

Poster No. EA-12



http://www.nasa.gov/

National Aeronautics and
Space Administration

Modelling Surface Water Flow on Coastal Wetlands

Ke Liu (334F)
Marc Simard (334F)

1. INTRODUCTION

Coastal wetlands are valuable natural resources with multiple ecological and economic
functions. They provide an effective storage of carbon, a natural habitat for many endangered
species and a defense line against storm surges and waves.

Louisiana has the largest area of coastal wetlands in the contiguous United States. While most
of the Louisiana coastline is struggling with marsh erosion and land loss, two river deltas, the
Wax Lake Delta and the Atchafalaya Delta, are emerging in the Atchafalaya Bay and provide
a unigue setting to study the interaction of river and coastal hydrodynamics.

JPL researchers conducted field campaign over the Atchafalaya Basin in 2016 and collected
data to show the water flow on the wetlands was dynamically changing with tides and river
flow, but the temporal resolution of the measurement data was limited during the survey
period of time.

In this project, we develop numerical models to bridge the gaps between discrete
measurements and utilize the models and the measurement data to better understand the
surface water flow on the coastal wetlands.

Legend

© Gauges
N Wax Lake Outlet

Louisiana &

New

Gulf of Mexico

Figures 1. The study area on the Louisiana coast.

2. METHODS

The water depth measured by SONAR s interpolated to reconstruct the river bathymetry in the Wax Lake Outlet.

A 1D model is developed for the Wax Lake Outlet to study the interaction of tides and river flow using HEC-RAS,
and a depth-averaged model is developed using Delft3D for the whole Atchafalaya Basin to simulate the water level
change on the wetlands and the water exchange between the wetland and the river channel.

The model results are compared with the water level and the water surface profiles measured during the field
campaign. The difference between the model results and the observations is used to infer the probability
distributions of model parameters and identify key physical processes which has a significant impact on the
modelled results.

Field
Measurements

Model
Prediction Evaluation
“-—-——- - -
.. Parameter _ ME
;?:%-f” HEC-RAS Inferenr:e Residuals [
I
Coastal |
System I
Parameter :
2D Inference I
Modelling W 25

Delft3D

Figure 2. The flow chart of our methods to merge the models and the observation data.
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4. CONCLUSIONS

* We measured river bathymetry, water level changes and water surface profiles in the Atchafalaya Basin.

* \We Integrated the measurements from different instruments and developed numerical models (1D and 2D) to simulate the hydrodynamic processes in the Wax Lake Outlet and the adjacent wetlands.

* The difference between model results and the observations was utilized to infer the optimum model setting using Bayesian methods.

 The optimized 1D model not only successfully reproduced the measured water level in the Wax Lake Outlet and the water surface profiles along the channel, but also helped identify the key parameters and

processes which play significant roles in the 2D hydrodynamics.

« The 2D model predicted the water level variation in the Atchafalaya Basin under different riverine and marine forcing and served as a useful tool to better understand surface water flow on coastal wetlands in a

complicated geophysical setting.
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Background

Radar data dependency

Wetlands connect land and water with productive ecosystems. It plays like buffer by collecting
water and releasing it slowly to reduce flooding. For areas with continual inundation, surface-
water level change is an index to monitor the overall water throughput of the wetlands. Here
we study surface-water change over grassy wetlands such as marsh. L-band
(wavelength~24cm) radar interferometry is capable to capture its typical variation, few to tens
centimeters. This study Includes forward modelling, radar imaging processing, and In-situ
validation.

Method

For cylinders over flat water surface at L-band, strong double-bounce scattering is dominant.

e Through HH polarization monte-carlo simulation is applied to derive the relation
between interferometric phase change and surface water level change, vertical
displacement.

e ISCE(INSAR Scientific Computing Environment) software is used to process
Interferogram with speckle noise reduction.

» Retrieve water level change through adjacent pairs of interferogram in time-series.

AWL = Ap/(2kcosB)
 For larger time period, accumulate the retrieved water level change.
AWLy3 = AWL,+AW L, 4

Processing Flow

Results

AWL

—)

Vertical

displacement

UAVSAR stack images

Generate Interferogram (ISCE)

Apply the model to wetlands around Atchafalaya Basin in Louisiana. For radar imaging, L-band single
look complex stacks(SLC stacks) from NASA/JPL UAVSAR (Uninhabited Aerial Vehicle Synthetic
Aperture Radar) is applied. The acquisition period applied here is Oct.17, 2016. Hourly in-situ water

level data from CRMS (Coastwide Reference Monitoring System) stations are applied.
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| — Introduction :
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Scattering by large and complex-
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% To solve the local EM problem, we apply a
multi-level  Sherman-Morisson-Woodburry
Formula-based algorithm (SMWA) [4].

¢ The Sherman-Morrison Formula provides an
explicit formula of the inverse of A =B — uv!

3-Levels SMWA :

2. The Sherman-Morisson-
Woodburry Formula-based algorithm

/ 3) Computationally efficient calculation of the CBFs
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CBFM to the problem of scattering

[l = Numerical analysis :
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algorithm [1] and aggregate snow particles (b)
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Introduction

» Large-scale moderate-resolution (few- to sub-ha) products of forest height
and disturbance are essential for understanding the global carbon distribution
as well as its changes in response to natural events and human activities.

» Regarding this scientific need, the NASA-ISRO’s NISAR mission is going to
be launched in 2021. New methods using dual-pol (HH and HV) small-
baseline INSAR observations have been developed for spaceborne repeat-
pass INSAR missions like NISAR and also automated by designing a Python
software (https://github.com/leiyangleon/FSH/) that seamlessly works with JPL's
INSAR processing software (ROI_PAC and ISCE).

« For the first time, a mosaic of forest height was generated for Maine and New
Hampshire using JAXA's ALOS-1/-2 HV-pol InSAR data and compared with
airborne lidar and field inventory data over both flat and mountainous areas.
With the HH-pol InSAR data, forest disturbance such as selective logging is
not only detected but also quantified in subtropical forests of Australia
(compared against NASA's Landsat).

Forest height results

» Two-state Forest Height Mosaic
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Methodology
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Forest height

Forest disturbance results

» Forest height map (HV-pol data)
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» These new methods enable the automatic retrieval of forest height and disturbance
from NISAR-like spaceborne repeat-pass missions for the very first time, which
partially relieves the burden of launching the twin satellite (~$500M) to form a tandem
mission (state of the art) for this type of study.

« Although easily affected by precipitation, the operational simplicity and efficiency
make these methods a potential observing prototype for NISAR-like missions as they
are particularly designed for data with single and small spatial baseline, dual
polarization, moderate/large temporal baseline, complicated underlying topography.
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