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3. Result 
2015 Mw7.8 Nepal Earthquake The azimuth deformation is very 
different from the LOS deformation measured by regular SAR 
interferometry. The maximum azimuth deformation caused by this 
earthquake is up to 2.6 m. 

 

 

 

 

 

 

 

 

 

 

 

2016 Mw7.8 New Zealand Earthquake From azimuth deformation 
map, a number of known and unknown faults can be identified, which is 
important to the study of this very complex earthquake. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
4. Conclusion 
!  For the first time, azimuth deformation of a large earthquake is 

completely measured by L-band wide-swath SAR interferometry. 

!  Results have already contributed to earthquake research (Hamling et 
al., 2017, Science). 

!  With SweepSAR technology and an extra range band, NISAR should 
be able to achieve much better accuracy than ALOS-2. 

1. Introduction 
NISAR The upcoming NASA’s NISAR mission carries an L-band wide-
swath Synthetic Aperture Radar (SAR). L-band SAR interferometry can 
measure deformation with much lower noise level, while wide-swath has 
the benefit of imaging a large area and reducing revisit time. 

Problem 1. Like regular SAR interferometry, wide-swath SAR 
interferometry also only measures Line-of-Sight (LOS) deformation on 
the ground. Azimuth (approximately north-south) deformation is critical 
for measuring 3-D deformation.  

2. L-band SAR is more sensitive to ionosphere. Ionosphere causes 
azimuth shift in the azimuth deformation measurement. It should be 
corrected to improve the azimuth measurement accuracy. 

Objective Our objective is to use an L-band wide-swath SAR to 
measure azimuth deformation and do ionosphere correction. We use L-
band wide-swath SAR data acquired by JAXA’s ALOS-2 mission to 
explore NISAR’s potential of measuring large-area azimuth deformation. 

 

2. Method 
Azimuth Deformation ALOS-2 uses burst technique to acquire wide-
swath image. A target on the ground can be imaged by several bursts. 
Each burst can measure the azimuth deformation projected onto its  
LOS (such as    ). Azimuth deformation   can be calculated by combining 
two bursts.  

 

 

 

 

 

 

 

 

 

Ionosphere Correction The ionosphere shift in the azimuth 
deformation measurement can be calculated by 

 

 

where     is the velocity of the radar footprint on the ground,     is the 
azimuth frequency modulation rate, and    is the azimuth time. 

Ionosphere phase delay        is inversely proportional to radar 
frequency. It can be estimated using a split-spectrum method. 
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Nepal Mw7.8 Earthquake
ALOS-2 Unwrapped Burst Difference (MAI/Spectral 
Diversity) Interferogram (Along-Track Deformation)

Earthquake Date: 25 April 2015
Data Dates: 150222-150503
Track: D048
Acquisition Mode: ScanSAR-ScanSAR
Processing Method: Burst By Burst
Processed By: NASA-JPL/Caltech ARIA
Background Image Copyright Google Earth
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New Zealand Mw7.8 Earthquake
ALOS-2 Unwrapped Burst Difference (MAI/Spectral 
Diversity) Interferogram (Along-Track Deformation)

Earthquake Date: 14 November 2016
Data Dates: 161018-161115
Track: D194
Acquisition Mode: ScanSAR-ScanSAR
Processing Method: Burst By Burst
Processed By: NASA-JPL/Caltech ARIA
Background Image Copyright Google Earth
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Introduction
Closing the water balance in most of the region is exceedingly difficult due to the
sparsity of field observation, large uncertainties in satellite derived estimates and
model limitation. The study integrated multiple NASA satellite missions in order to
compute total water storage (TWS) of the Aral Sea and its basin and analyzed the
Aral Sea desiccation.

Objective
• Evaporation estimation from the Aral Sea water body 

• Runoff estimation into the selected sub basin

Study area
The Aral Sea has become a major ecological disaster during the 20th century, due
to largescale irrigation abstraction from its two primary inflow Amu Darya and Syr
Darya. The Figure-1 shows the major canal irrigation region of the Aral Sea basin.
The yellow region in the Figure-1 shows the analyzed Aral Sea sub-basin,
demarcated based on the GRACE gravity field missions mascon grid.

Summary
• The TWS of the lake is computed by altimetry based water height and high

resolution Landsat data. The lake TWS is constrained by in-situ runoff to
compute E estimate.

• The figure-2 indicates that ET is the most uncertain parameter in this region
and can be back calculated from the TWS. P has limited contribution over the
lake.

• The runoff estimation method showed in figure-3 can be used to estimate long
term variations in runoff.
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The authors acknowledge the financial support made available by NASA GRACE and GRACE-
FO (NNH15ZDA001N-GRACE) and NASA Energy and Water Cycle Study (NNH13ZDA001N-
NEWS) awards. Special thanks to Joshua Fisher (329G) and Halverson Gregory (329G) from
JPL for providing MODIS based potential evaporation and actual evapotranspiration estimates

Figure 2:  The Aral Sea waterbody: MODIS based potential evaporation is compared with the 
evaporation estimates back calculated from the TWS  of the lake

Aral Sea waterbody

Figure 1: Study area. R1 is the derived total drainage from the Amu Darya and the Syr Darya into 
the selected Aral Sea sub-basin (yellow region) and R2 is the total drainage into the Aral Sea 
waterbody obtained from in-situ observations.

Figure 3: The Aral Sea sub-basin: R1 estimation from the GRACE based TWS and the other 
hydrological fluxes (for e.g. ET from WGHM and P from TRMM)

Aral Sea sub-basin

http://www.nasa.gov/
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Results

Figure 2 shows Jan-Apr 2012 SM and July 2012 VPD observations, observed number of fire
occurrences and predicted likelihood of fire occurrence for August 2012. The first row shows Jan-Apr
2012 Soil Moisture and July 2012 VPD observations. The second row shows the observed and
predicted likelihood of fire occurrences for August 2012. As shown , observed and predicted maps
show consistent patterns in the entire United States.

Figure 3 shows the validation of the model framework across different landcover and GACC
types. Figure 3a shows GACC types across the US. Figure 3b shows the time series of monthly
average fire observations and simulations in GACC Eastern. Figure 3c shows the total number
of fire observations and simulations across various landcover types. Figure 4d shows the spatial
map of RMSE between simulations and observations.

Conclusion

• This study used January through April Soil Moisture and 1-month leading time VPD data to
predict the likelihood of monthly fire occurrences.

• We have validated the model across various landcover and GACC types. The result show
that the model can potentially predict the likelihood of fire occurrences with relatively small
margin of errors.

• These maps can be useful in not only government operational allocation of fire management 
resources, but also improving understanding of the Earth System and how it is changing in 
order to refine predictions of fire extremes

• The future work includes investigating other hydrologic variables including vegetation 
greenness and precipitation data to improve the model performance.

Introduction

Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and
contributing significantly to both carbon emissions and changes in surface albedo. The
socioeconomic impacts of wildfire activities are also significant with wildfire activity results in
billions of dollars of losses every year. Numerous studies have aimed to predict the likelihood of
fire danger, but few studies use remote sensing data to map fire danger at scales commensurate
with regional management decisions (e.g., deployment of resources nationally throughout fire
season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And
Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared
Sounder (AIRS) vapor pressure deficit, and landcover products, along with US Forest Service
historical fire activity data to generate probabilistic monthly fire potential maps in the United
States. These maps can be useful in not only government operational allocation of fire
management resources, but also improving understanding of the Earth System and how it is
changing in order to refine predictions of fire extremes.

Datasets

• Pre-season Jan-Apr GRACE-assimilated Soil Moisture

• 1-month lead AIRS Vapor Pressure Deficit (VPD)

• Monthly fire counts from USDA Forest Service’s Fire Program Analysis Fire-occurance
database (FPA FOD)

• USGS National land-cover databse

Methodology

• First, we develop a 2-D space of SM and VPD values for all land cover types deciduous,
evergreen, shrub land, herbaceous, and wetland. The space splits each variable into 20 equal-
sized ranges. For each bin in the space , we then calculate:

𝑝 𝑓𝑖𝑟𝑒 =
𝑡𝑜𝑟𝑎𝑙	𝑓𝑖𝑟𝑒	𝑜𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙	𝑠𝑚	𝑉𝑃𝐷	𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠

One look-up table is generated for each land-cover type and each month. Once a real-time SM ad
VPD observation becomes available, the corresponding look-up table will be utilized to predict the
likelihood of fire occurrence. Figure 1 shows look-up tables generated using Jan-Apr SM and July
VPD observations for predicting the likelihood of fire occurrence in August.
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I. Introduction

III. Methodology 

IV. Results

V. Conclusions/Discussion

II. Objective

• The mountain snowpack is an important component of the hydrologic cycle and 
an essential water resource for communities across the globe. 

• Being able to correctly estimate snow is not only a great necessity for scientists, 
water resource managers and decision makers, but also a challenge.

• Western States Water Mission (JPL): 
• Goal: provide accurate and accessible water availability data products for the 

U.S. western states to water applications stakeholders and the scientific 
community through a convenient user interface. 

• Leverage space and air-borne NASA data products in conjunction with 
hydrologic models to improve water availability estimation.

• Estimating snow amount is a crucial component of achieving these goals 

• Improve snow water equivalent (SWE) estimation over the Western U.S. (WUS) 
using data assimilation (DA) of space-borne data and high-resolution hydrologic 
modeling.

• Evaluate against spatially distributed Airborne Snow Observatory (ASO) data.

• Batch smoother method desirable for snow DA, considers evolution of SC 
throughout the season to inform SWE updates (vs sequential filter method).

• Compare “assimilation” and “no assimilation” cases against observations to 
assess improvement.

• Goal of work shown here: evaluate this method on smaller river basins (where 
ASO available) then expand and use method on larger area (WUS).

Domain: Tuolumne River Basin, CA 
Spatial resolution: 1.75 km x 1.75 km (~ 3 km2)
Temporal coverage: WY 2013-2016, daily time step (snow model, 3h step)
DA: Local Ensemble Transform Kalman Filter. To avoid spurious correlations 

during early accumulation season, assimilation window limited to Jan-Jul.

Data: 
Assimilation: MODSCAG (MODIS Snow Covered 
Area and Grain Size) - daily snow cover fraction; 
native resolution: 500 m 
Validation: ASO (Airborne Snow Observatory) 
SWE; select dates during spring season; native 
resolution: 50 m

Models: 
VIC (Variable Infiltration Capacity, U. Washington, Liang et al. (1994)) 
semi-distributed macro-scale hydrologic model
RHEAS software (JPL, K. Andreadis) – snow DA (based on Hunt et al. (2007)): 

• Calculates SWE and SC climatology once (here, 1981-2010)
• Random sampling of climatology to construct background ensemble
• Computes optimal weights between SC background state and SC observations 

given model and observations errors (background perturbation errors and obs 
errors)

• Weights used to updates SWE state variable

WSWM

Full WSWM domain &
Tuolumne RB domain in this study

Assimilation improves SWE spatial distribution wrt ASO 

In assimilation case:
 More SWE throughout all elevation bands
 In dry years, deeper snowpack, and more snow at mid & high elevations
 In average year, SWE distributed more evenly across elevation bands 

instead of clustered at high elevations

Challenge • Assimilating snow cover (SC) observations to update SWE estimates.
• Instantaneous SC does not provide that much information on instantaneous SWE

Terra (MODIS) 

Airborne Snow Observatory 

GRACE
USGS stream gauges

1. Observations

2. High Resolution Modeling

http://uw-hydro.github.io/code/

4. Interactive data analytics

Snow water equiv.
Soil Moisture 
Ground water
Stream flow
Evaporation
Subsidence  

5. USERS
Stakeholders

Water resource managers
Policy makers

Scientists 

3. Estimates with uncertainties

Figure 2. SWE time series for WY 2013, 2014, 2015, and 2016 comparing model results, with (blue) and without (grey) 
assimilation, with ASO SWE data (red triangles) and SNOTEL station data (green). Area average over Tuolumne basin. 
Upper left numbers represent correlation coefficient for model assim-SNOTEL vs. model no assim-SNOTEL.

2014

2015

2016

2013

Model: no assim Model: assim Observations: ASO

Figure 3. SWE [mm] spatial maps, averaged over select spring dates when ASO is
available: model no assimilation (left), model with MODSCAG assimilation (center), and
ASO (right). ASO data (50 m) regridded/aggregated to VIC spatial resolution (1.75 km).

Figure 4. SWE [mm] with respect to elevation. Model data selected for ASO dates only. 

Finding the appropriate DA implementation

Simulation 
length 
matters

Assimilation 
window 
matters

Fig 1. SWE [mm] time series for WY 2016; assimilation window sensitivity studies. 
Bottom: schematic showing temporal implementation of assimilation method.

Model captures SWE temporal variability well: good 
temporal correlations vs in-situ (SNOTEL) data

Model underestimates peak SWE in average and wet years.

2013 2014

2015 2016

0.89 vs 0.790.96 vs 0.93

0.90 vs 0.740.89 vs 0.70

• New method (Local Ensemble Transform Kalman Filter, LETKF) tested for snow DA
• Benefit of this LETKF: its relative simplicity, ease of implementation & 

computational efficiency (parallelization, 1-time climatology)
• Assessed over smaller area, but can be easily scaled up to larger domain

• Validate DA method against ASO SWE product: new-most studies evaluate 
against station (snow pillows) data, which don’t capture spatial distribution and 
variability.

• Assimilation improves SWE estimates over open-loop (no assim) case when 
compared with observations, both temporally and spatially.
• Model preforms better during drier years (vs average years), and during the 

melting season (vs accumulation).

• Model underestimates peak SWE during average snow years (e.g. 
WY2016) but performs well during drier (drought) years.
• Underestimation of peak SWE likely due to model 

parameterization - inadequate, simplistic snow depletion 
curve (SDC).

• Assimilating SC to updated SWE remains a challenge, especially 
when near-real time updates are desirable (vs reanalysis methods)

• WSWM successfully (i) developed framework and (ii) tested new 
snow DA for multi-year period (17 years) over large area 
(western US) at high resolution (3 km2), overcoming 
computational challenges associated with such task. 

http://www.nasa.gov/
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1. Introduction

3. Calibration
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1. Small UAVs with lightweight sensors offer the 
potential to capture the diurnal variability in Land 
Surface Temperature (LST) at high spatial 
resolutions.

2. Commercial low-cost sensors (e.g. Tetracam + 
FLIR Tau- 2 module) are capable of acquiring co-
registered multispectral (Vis-NIR) and thermal 
imagery from UAVs.

3. However the spotmeter based temperature 
measurements from these uncooled 
microbolometer based FPA sensors are unstable 
and inaccurate. 

2. Objectives
1. Develop ambient operating temperature dependent 

calibrations for retrieving LST without the use of 
spotmeter for long term field deployment for 
monitoring vegetation.

Fig. 1. JPL thermal chamber experimental results 
showing a consistent pattern of  ambient -temperature 
dependent instability across a range of blackbody 
temperatures. 

2. Incorporate LST measurements and flux tower observations into physically based energy balance 
frameworks for characterizing the diurnal cycle of evapotranspiration (ET) over agricultural 
systems.

Fig.2 (Left) Experimental results showing the relationship (calibration) between the mean FPA DN counts and blackbody 
temperatures for a range of ambient sensor temperatures. (Right) Results showing the non-linear relationships between the 
mean standard deviation (uncertainty) of FPA DN counts and blackbody temperatures for a range of ambient sensor 
temperatures. 

1. FPA-Temperature = Mean Calibration + FPA Non-uniformity correction  (each term = f(amb temp))
2. Maximum value of ambient temperature dependent FPA NUC ~ ± 1℃.
3. Independent validation show error in pixel wise temperature prediction from calibration is ± 1℃.

4. Field Campaign –
Russell Ranch

5. Results –Validation and Diurnal Trends in LST

6. Computing Evapotranspiration

1. Data acquisition at Russell 
Ranch, Davis, CA on 27th

April 2017 - capturing 
diurnal variability in LST.

2. Tetracam sensor (6band 
VNIR + FLIR Tau-2 thermal 
channel).

3. UAV flights over targets 
(metal plates and tarps) and 
crop validation plots to 
capture the diurnal variability 
in LST.

4. Laboratory derived mean and 
FPA non-uniformity 
calibrations are applied to the 
thermal imagery.

5. Imagery is orthorectified and  
mosaicked together.

6. Imagery represents the 
warming and cooling trends 
of the target and crops well.

Fig.3 N-S transects over target and crop validation plots at RR agricultural sites 
in Davis, CA. The acquisition times are 9:30am (morning), 12:00 pm (afternoon) 
and 6:15 pm (evening).

Spatial Resolution ~ 3cm

Fig. 4 Scatterplots representing the UAV measured target temperatures (panel-a) and crop temperatures (panel-b) versus 
corresponding IRT ground measurements for 9 flights spanning the April, 26 (D1) and 27 (D2) , 2017. The errorbars 
represent the one standard deviation uncertainty along both x and y axes. Panel-c boxplots showing the diurnal variation 
in the spatial distribution of crop temperatures as measured from UAV acquisitions for April 27, 2017. 
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Fig. 5 Panel-a shows the seasonal 
variation of 2016 growing season ET 
fluxes as computed with STIC and its 
comparison with flux tower 
observations for JPL-corn site, Ames, 
Iowa.
Panel-b shows the comparison of STIC 
modeled and tower observed estimates.
Panel-c demonstrates the  capabilities 
of STIC in capturing the diurnal cycle 
of ET very well.

1. The Surface Temperature Initiated Closure (STIC) model is used for computing ET Fluxes.
2. STIC provides a physically based surface energy balance framework for simultaneous retrieval of 

the surface and atmospheric conductance and surface energy fluxes (latent and sensible heat) by 
physically integrating radiometric surface temperature into the Penman-Monteith equation.

8. Conclusions

7. Spatial and Diurnal
Variation in ET

Fig. 6 Results of ET computation from data 
collected at Sweeney Corn site in Ames, Iowa. 
Panel-a shows the NDVI computed using the 
850nm and 650nm channels of the Tetracam.  
Panel-b shows the derived  LST using the 
11000 nm (center wavelength) co-registered 
FLIR Tau-2 channel and Panel –c shows the 
ET computed  using LST and flux tower 
observations on site. The imagery was 
collected on August 6, 2016 at 11:30 am local 
time.
The spatial structure of the corn rows are 
clearly observed as well as the distinction 
between grassy areas and corn.
Panel-d shows the  diurnal  variability in ET 
captured from UAV with the STIC modeled 
and flux-tower observed values for August 6, 
2016.

a b

c d

1. The developed calibration methodology allows accurate retrieval of LST using low cost 
microbolometer sensors from sUAV platforms with an error ± 1℃.

2. We demonstrate the applicability of STIC for computing ET from radiometric LST observations and 
capturing the diurnal variability of ET. 

3. This methodology using sUAS could be used for validating the diurnal cycle of ET and LST from 
ECOSTRESS mission in future.
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Model	Output	 Observa0ons	

Methods	

Model	Output	

Mo0va0on	

ILAMB 

Examples	of	dataset	observa1on	sources	

Datasets	

ECOSTRESS 

MODIS 
GRACE 

ICESat 

SMAP OCO-2 GEDI 

Address Key! Indicators!

•  How are the magnitudes, fates, and land-atmosphere exchanges of carbon 
pools responding to environmental change, and what are the biogeochemical 
mechanisms driving these changes?!

•  What processes are contributing to changes in disturbance regimes and what 
are the impacts of these changes?!

•  How are flora and fauna responding to changes in biotic and abiotic 
conditions, and what are the impacts on ecosystem structure and function?!

•  What are the causes and consequences of changes in the hydrologic system, 
specifically the amount, temporal distribution, and discharge of surface and 
subsurface water?!

•  What processes are controlling changes in the distribution and properties of 
permafrost and what are the impacts of these changes?!

The benchmarking system is based upon 
ILAMB and will eventually be 
incorporated into ILAMB. The system 
will reside on the ABoVE Science Cloud, 
enabling fast access to current and future 
ABoVE data as well as other datasets 
relevant to the ABoVE region. 

Benchmarking	System	

Benchmarking 
System Calculates 

Scores, Makes 
Graphics, and 
Builds Custom 

Webpage 

User Views 
Results on 

Custom Webpage 

User Updates 
Model Based on 

Benchmark 
Results 

User Uploads 
Model to 

Benchmarking 
System 

Process	

Version 
1.0 

Version 
1.5 

Version 
2.0 

The benchmarking system will utilize functional 
benchmarks to explore the relationship of a given 
variable on one or more driver variables. This allows 
modelers to determine if their model is accurately 
representing the inter-dependence of these key 
Arctic processes.  

Func0onal	Benchmarks	

Author Affiliations: 
•  California Institute of Technology 
•  University of Maine 
•  Northern Arizona University 
•  Woods Hole Research Center  
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Frankenberg et al., 2011; Joiner et al., 2011

Introduction:

Primary Objectives:• Recent advances have been made in the retrieval 

of solar-induced chlorophyll fluorescence (SIF) 

from space and could provide a significant step 

towards mapping instantaneous plant 

photosynthesis across space and time.

• While these advances are promising, there are still 

many unresolved issues related to the spatial, 

spectral, and temporal scale-change problem, 

making interpretation of the mechanisms 

driving the SIF signal from space challenging. 

Global SIF as a proxy for photosynthesis?

• Leaf – changes in spectral shape of SIF signal

Acknowledgements:
This work was supported by a NASA Postdoctoral Program Fellowship awarded to TSM, OCO-2, and the Keck Institute for Space Studies. In addition to the co-authors, 

thanks goes out to Gretchen North, Nick Parazoo, Thomas Davis, Ulli Siebt, Joe Berry, Albert Porcar-Castell,  Darren Drewry, and Ari Kornfield for helpful insights and 

discussions.

leaf.

tower.

aircraft.

satellite.

• Tower – diurnal and seasonal changes in SIF signal

• Airborne – spatial changes in SIF signal

• Changes in the spectral shape of SIF are mostly driven by 

chlorophyll content, followed by changes in NPQ & PSII 

yields. See PCA2 and PCA3 from a SVD analysis.

• Measure photosynthesis, active, 

and passive fluorescence 

simultaneously.

• Over a range of physiological 

conditions, species, and 

environments.

• Analyze changes in spectral 

shape coincident with changes 

in physiological function.

Leaf approach:

Tower approach:

Air approach:

Satellite approach:

Conclusions:

• Changes in SIF are primarily driven by absorbed 

photosynthetically active radiation (PAR).

• Currently QA/QC data from the four sites.

Conclusions:

• OCO-2 underpass correspond well with CFIS data.

• See poster of P. Koehler for initial retrieval results.

Conclusions:

• Leaf, tower, and airborne data are enabling improved 

interpretation of SIF at 757 and 771 nm from OCO-2.

Conclusions:

• Satellite – improved interpretation of SIF signal
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• Build five spectrometers to 

measure SIF using the 

Fraunhofer approach

• Currently installed in Costa 

Rica, Iowa (2), and Colorado.

• Collect species specific and 

spatially varying information 

on plant function (SIF, other 

VIs) every 15 minutes over the 

course of a season.

• CFIS was built at JPL and has 

been flying over a variety of 

ecosystems since 2015.

• Capture the spatial variability 

of the SIF signal

• Coincident flights with 

SMAPVEX campaign and 

Carnegie Airborne Observatory

• Diurnal flights over flux towers

• Using information from leaf, 

tower, and airborne scales to 

better interpret the spatial, 

spectral, and temporal 

variability in the SIF signal.

• Outline of approach is 

highlighted in Sun et al., 2017.

Sun et al., 2017

Sun et al., 2017

Grossmann, et al., in prep.

Schematic of gas-exchange, active/passive fluorescence system: Magney et al., 2017

SVD analysis of spectral shape: Magney et al., in prep.

Sun et al., 2017

Frankenberg et al., in prep.

Installation: Niwot Ridge, CO Diurnal data from La Selva, Costa Rica

Install: La Selva Biological Research Station, Costa Rica

OCO-2 underpass

Twin Otter Aircraft

Mammoth Lakes, CA

Field sampling, 

Stunt Ranch Preserve, CA

http://www.nasa.gov/


5. BIOMASS MAPS 
 

3. MAPPING TIDAL MARSH EXTENT 
•  Landsat 8 OLI optical satellite imagery  
•  Scenes acquired August 8th and August 25th 2015 and corrected for temporal/atmospheric effects 
•  Subset to the parishes of St. Mary’s and Terrebonne 
•  Classified using a Random Forests machine learning algorithm using image segmentation via free 

and open source software (Fig. 1, Table 1) 
•  Training provided by in-situ coastal monitoring stations 

4. TIDAL MARSH BIOMASS 
•  NASA JPL Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) imagery 
•  Scenes acquired May 2015 and October 2016  
•  Radiometric and geometric calibration and merging of adjacent flightlines 
•  Field data acquired May and September 2015 (low and peak biomass) 
•  Relationships derived between UAVSAR HV polarized backscatter and field biomass data (Fig. 2) 
•  May and September field data were combined to derive relationships with each UAVSAR scene 
•  Backscatter increased with biomass until saturation occurred at high biomass values 
•  Biomass maps (Fig 3 and Fig 4; Table 1) created by applying derived relationship to UAVSAR 

HV polarized scenes 
 

High-resolution mapping of tidal marsh distribution and 
biomass with L-band radar 

Nathan Thomas 334-F 
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1.  INTRODUCTION 
•  Tidal marshes provide important ecosystem services such as carbon storage, coastal protection 

and biodiversity 
•  High resolution maps of extent and biomass are required for reporting to UN initiatives (e.g., 

Intergovernmental Panel on Climate Change (IPCC)) but are largely unavailable 
•  Anthropogenic pressures such as coastal development are causing the loss of tidal marshes and 

their associated ecosystem services 

2. OBJECTIVE 
•  Map Louisiana tidal marsh distribution and biomass to satisfy IPCC reporting requirements 

•  Derive a high-resolution map of tidal marsh extent 
•  Test the capacity for biomass mapping and monitoring with JPL airborne radar 

Area 
(km2) 

Oct Biomass (t) May Biomass (t) 
 

Common Extent Difference (t) 

Grass 1,339 608,746 1,700,874 92,431 
Leaf 507 890,113 828,760 286,822 
Forest 1,288 6,829,973 18,910,317 N/A 
Emergent/Delta 76 131,508 85,368 109,972 

7. DELIVERABLES 
•  A novel map of Louisiana tidal marsh extent at high resolution, providing a new and up-to-date baseline 
•  Created previously unavailable very high resolution maps of seasonal biomass which provide greater 

understanding of the seasonal change in marsh productivity as required for monitoring by the IPCC 
•  Successfully quantified biomass using JPL UAVSAR, demonstrating the capability for biomass/carbon 

accounting of coastal marsh ecosystems 
 
8. FURTHER WORK 
•  Simulations for NASA-ISRO SAR 

•  ALOS-2/Landsat 
•  Carbon estimations and seasonal changes 
•  Estimations of error propagation 

6. SUMMARY OF RESULTS 

•  Increase in biomass in October, coincident with increased productivity of the marsh vegetation 
•  Grass marshes are the dominant marsh type 
•  Seaward increase in the Wax Lake and Achafalaya deltas during peak biomass 
•  Smallest biomass values amongst the extensive inundated grass marshes 

Table 1. Summary of tidal marsh class are and seasonal biomass values 

October 2016 biomass 

May 2015 biomass 

Fig. 1 Landsat 8 classification of Louisiana tidal marsh extent   

Fig. 2 Relationship between field biomass data and UAVSAR backscatter 

Fig 3. May 2015 biomass map derived from the relationship in Fig 2. 

Fig 4. October 2016 biomass map derived from the relationship in Fig 2. 



2. Methods
•We estimate forest height from the UAVSAR data using polarimetric synthetic aperture radar interferometry (PolInSAR) and the 
random volume over ground (RVoG) forest model, which relates the physical characteristics of the forest to the radar observations.  

•For multi-baseline data (i.e., greater than two different flight tracks), we can estimate multiple independent forest height estimates 
from the various baselines which must then be weighted or selected in order to obtain a single forest height for each radar image 
pixel.  The UAVSAR data contained a large number of repeat passes (5 for Pongara, 9 for Akanda), making baseline selection a 
vital step in the forest height estimation process.

•We tackled this baseline selection problem using a support vector machine (SVM) classifier with a linear kernel function, using a 
large feature set which contained a variety of radar-derived metrics based on the PolInSAR coherences and coherence region shape, 
viewing and terrain geometry, and radar backscatter.  A flowchart of the method is shown in Fig. 2.

•The SVM was trained using a sparse subset of the LVIS relative height 100 (RH100) data with 250 m spatial separation between 
samples.  This lidar sampling density is similar to what will be expected from future spaceborne lidar missions, such as GEDI.  The 
remainder of the LVIS data was used for validation (Fig. 3).

Mapping Forest Height Using PolInSAR and Lidar Fusion
Michael Denbina (334F)

Marc Simard (334F)

Poster No. EA-12

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
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1. Introduction
•We used airborne remote sensing data from NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR) and Land, Vegetation, & Ice Sensor (LVIS) lidar to map forest canopy height for study areas in
the country of Gabon. These data were collected as part of NASA’s AfriSAR campaign in 2016.

•We developed a new machine learning-based method to perform data fusion of radar and lidar forest height
estimates. The result has the wide coverage area and high spatial resolution of UAVSAR, but with
improved accuracy compared to a purely radar-based approach. The forest height maps for the two study
areas are shown in Fig. 1.

•Obtaining high resolution maps of forest height is important for understanding the ecosystem carbon
budget, and for quantifying the effects of deforestation and forest growth. Forest biomass can be estimated
from forest height using allometric equations derived from field measurements.

•Developing methods for fusion of radar and lidar data is vital to make optimum use of data from future
spaceborne missions, such as the NASA-ISRO SAR (NISAR) and the Global Ecosystems Dynamics
Investigation (GEDI) lidar.

3. Conclusions
•Developed a new method for fusion of PolInSAR and lidar data in order to generate more accurate PolInSAR forest height estimates, with a high spatial resolution (30 m) and a wide coverage area (22 km swath). The method 
considers the PolInSAR baseline selection process as a supervised classification problem, which we perform using a support vector machine classifier trained with sparsely distributed lidar-derived forest heights.

•Produced forest height maps for two national parks in the country of Gabon.   Results validated using LVIS samples excluded from the data fusion procedure, with RMSE of 4.99 m in the Akanda National Park study area, and 6.11 m in the 
Pongara National Park study area.  For comparison, we also performed baseline selection using standard radar-derived data quality metrics (coherence region eccentricity, and expected phase center height variance), but these methods resulted in 
less accurate forest height estimates (RMSE values of 8.47 m for Akanda and 7.69 m for Pongara).

•Results demonstrate the potential for fusion of PolInSAR and spaceborne lidar data.  Lidar sample spacing of 250 to 500 m is sufficient for training the SVM classifier.  Data from the Global Ecosystem Dynamics Investigation (GEDI) lidar 
will satisfy this requirement, though the data is expected to be noisier than the LVIS airborne lidar data used in this study.

•Next Steps: Continue to refine methodology, and apply the method to other datasets and study areas.  Validate using field data in Pongara National Park.  Estimate biomass from forest height maps using allometric equations.

Fig 2. Flowchart of the proposed forest height fusion method.

Fig. 1.  Forest height maps created using UAVSAR and LVIS machine learning 
fusion for Akanda National Park (North) and Pongara National Park (South), 
Gabon.  Overlaid on Landsat-8 imagery, available from U.S. Geological Survey.

0 m 50 m

Fig. 3. Density plots of forest height using the proposed fusion method vs. LVIS RH100 forest 
height.  Left: Akanda National Park (Northern area in Fig. 1).  Right: Pongara National Park 
(Southern area in Fig. 1).
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4. CONCLUSIONS
• We measured river bathymetry, water level changes and water surface profiles in the Atchafalaya Basin.

• We integrated the measurements from different instruments and developed numerical models (1D and 2D) to simulate the hydrodynamic processes in the Wax Lake Outlet and the adjacent wetlands.

• The difference between model results and the observations was utilized to infer the optimum model setting using Bayesian methods.

• The optimized 1D model not only successfully reproduced the measured water level in the Wax Lake Outlet and the water surface profiles along the channel, but also helped identify the key parameters and
processes which play significant roles in the 2D hydrodynamics.

• The 2D model predicted the water level variation in the Atchafalaya Basin under different riverine and marine forcing and served as a useful tool to better understand surface water flow on coastal wetlands in a
complicated geophysical setting.

1. INTRODUCTION
Coastal wetlands are valuable natural resources with multiple ecological and economic
functions. They provide an effective storage of carbon, a natural habitat for many endangered
species and a defense line against storm surges and waves.

Louisiana has the largest area of coastal wetlands in the contiguous United States. While most
of the Louisiana coastline is struggling with marsh erosion and land loss, two river deltas, the
Wax Lake Delta and the Atchafalaya Delta, are emerging in the Atchafalaya Bay and provide
a unique setting to study the interaction of river and coastal hydrodynamics.

JPL researchers conducted field campaign over the Atchafalaya Basin in 2016 and collected
data to show the water flow on the wetlands was dynamically changing with tides and river
flow, but the temporal resolution of the measurement data was limited during the survey
period of time.

In this project, we develop numerical models to bridge the gaps between discrete
measurements and utilize the models and the measurement data to better understand the
surface water flow on the coastal wetlands.

2. METHODS
The water depth measured by SONAR is interpolated to reconstruct the river bathymetry in the Wax Lake Outlet.

A 1D model is developed for the Wax Lake Outlet to study the interaction of tides and river flow using HEC-RAS,
and a depth-averaged model is developed using Delft3D for the whole Atchafalaya Basin to simulate the water level
change on the wetlands and the water exchange between the wetland and the river channel.

The model results are compared with the water level and the water surface profiles measured during the field
campaign. The difference between the model results and the observations is used to infer the probability
distributions of model parameters and identify key physical processes which has a significant impact on the
modelled results.

Figures 1. The study area on the Louisiana coast.

3. RESULTS

Figure 2. The flow chart of our methods to merge the models and the observation data. 

Figure 3. Left: A comparison of modelled tidal variation from HEC-RAS and the 
observation data at water gauges. 

Right: The modelled water level in the Atchafalaya Basin from Delft3D.

http://www.nasa.gov/
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Wetlands connect land and water with productive ecosystems. It plays like buffer by collecting
water and releasing it slowly to reduce flooding. For areas with continual inundation, surface-
water level change is an index to monitor the overall water throughput of the wetlands. Here
we study surface-water change over grassy wetlands such as marsh. L-band
(wavelength~24cm) radar interferometry is capable to capture its typical variation, few to tens
centimeters. This study includes forward modelling, radar imaging processing, and in-situ
validation.

Phase 
Change

Vertical 
displacement

UAVSAR gulfco 12011 coverage(S-E 
bound)

Processing Flow 
Diagram

Generate Interferogram (ISCE)
• Multi-looking
• Flattening

UAVSAR stack images
• Same coverage
• Multiple images from 

different time

Apply phase correction

Retrieve water level change of 
adjacent pair

• Permanent Scatterers
locations

• Few in-situ measurement

Start a 
new pair

Background Radar data dependency

Apply the model to wetlands around Atchafalaya Basin in Louisiana. For radar imaging, L-band single
look complex stacks(SLC stacks) from NASA/JPL UAVSAR (Uninhabited Aerial Vehicle Synthetic
Aperture Radar) is applied. The acquisition period applied here is Oct.17, 2016. Hourly in-situ water
level data from CRMS (Coastwide Reference Monitoring System) stations are applied.

Results

Method

Accumulate water level change 
from adjacent pairs

Map pair(Track7,Track12), ~2hr 30min duration, rising 
tide

Time-series phase 
change

In-situ measurement
Adjacent pair

Time-series Water Level Retrieval

Accumulation pair
Retrieval (14 CRMS 

sites)

UAVSAR gulfco 12011 Acquisition, Oct.17,2016 
(~4min/track) 

Stack-track Track 7 Track 8 Track 9 Track 10 Track 11 Track 12
Starting Time 14:27 14:56 15:25 15:54 16:22 16:51

For cylinders over flat water surface at L-band, strong double-bounce scattering is dominant.
• Through HH polarization monte-carlo simulation is applied to derive the relation

between interferometric phase change and surface water level change, vertical
displacement.

• ISCE(InSAR Scientific Computing Environment) software is used to process
interferogram with speckle noise reduction.

• Retrieve water level change through adjacent pairs of interferogram in time-series.

• For larger time period, accumulate the retrieved water level change.

http://www.nasa.gov/
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Earth-Science missions aimed at the observation of clouds and precipitation require

the development of a coherent EM scattering model to accurately calculate the

absorption and scattering properties of inhomogeneous dielectric particles with

complex geometries representing snowflakes of various sizes and shapes. In this

work, we apply a powerful domain decomposition technique known as the

Characteristic Basis Function Method (CBFM), to the problem of EM scattering by

complex-shaped particles, and this, in the context of a 3D full-wave model based

on the volume-integral equation formulation of the electric fields (EFIE) . Our

main goal is to take advantage of the high computational efficiency of the CBFM

and its associated good level of accuracy when modeling the problem of EM

scattering by complex-shaped precipitation particles.

Pristine crystals (a) simulated using the snowflake 

algorithm [1] and aggregate snow particles (b)

Frequencies of interest : 

15 - 200 GHz 

1) Integral representation of the total electric field (EFIE) [2] :   

2) Application of the Characteristic Basis Function Method (CBFM) [3] :   

Computation of Zc

Block i

Example : M = 4 blocks

K = S1 + S2 + S3 + S4 << 3*N

Compression rate CR  = 
size of Zc

size of ZMoM

III – Numerical analysis :
II – Application of the CBFM to the problem of scattering 

by complex particles :

I – Introduction :

References : [1] Kuo & al. (2016). The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part I: An Extensive Database of Simulated Pristine
Crystals and Aggregate Particles, and Their Scattering Properties. Journal of Applied Meteorology and Climatology, 55(3), 691-708. [2] Fenni & al. "Fast analysis of large 3-D dielectric scattering
problems arising in remote sensing of forest areas using the CBFM." IEEE Transactions on Antennas and Propagation 62.8 (2014): 4282-4291 . [3] Lucente & al. “An iteration-free MoM Approach
Based on Excitation Independent Characteristic Basis Functions for Solving Large Multiscale Electromagnetic Scattering Problems”, IEEE Trans. Antennas Propag., Vol. 56, no. 4, pp.999-1007,
Apr. 2008. [4] Chen, & al, "Accelerated Direct Solution of EM Scattering via CBFM With Sherman-Morrison-Woodbury Formula-Based Algorithm," IEEE Transactions on Antennas and
Propagation, Oct. 2016.

* Radar Science (334H), Jet Propulsion Laboratory, USA ** UPMC Univ Paris 06, UR2, L2E, F-75005, 
France, # EMC Lab , University of Central Florida, USA and King Abdul Aziz University, Saudi Arabia     

𝒁𝑬 = 𝑬𝒊𝒏𝒄

Scattering by large and complex-

shaped ice particles 

Calculate the scattering properties of 
snowflakes of various sizes and shapes. 

Discrete Dipole approximation
(DDA) : DDScat, ADDA, …

Characteristic Basis Function Method 
(Direct Solver-based method)

β

𝝓

𝜽
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𝟏

𝟖𝝅𝟐
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Direct solver 

Hurricane Isabel NC landfall radar

With DDScat the target orientation (to) 

is defined using the Euler angles.

𝑸 =
𝟏
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න

𝟎

𝟐𝝅

𝒅𝝓𝒊 න
𝟎
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𝐬𝐢𝐧 𝜽𝒊 𝒅𝜽𝒊 𝑸 𝝓𝒊, 𝜽𝒊

DDScat

CBFM-based code 

OpenSSP database [1] :

6646 particles : pristine 

crystals and aggregate 

snow particles

50 µm resolution 

Available input shape files 

for DDScat

whereധГഥ𝑬 ത𝒓 = ഥ𝑬𝒊𝒏𝒄 ത𝒓 ധГ = ധ𝑰 − 𝒌𝟎
𝟐 + 𝜵𝜵. න

Ω

𝝌 ത𝒓′ ന𝑮 ത𝒓, ത𝒓′ 𝒅ത𝒓′

ഥ𝑬 ത𝒓 = ഥ𝑬𝒊𝒏𝒄 ത𝒓 + 𝒌𝟎
𝟐 + 𝜵𝜵. න

𝜴

𝝌 ത𝒓′ ന𝑮 ത𝒓, ത𝒓′ ഥ𝑬 ത𝒓′ 𝒅ത𝒓′VIEM :

Method of 

Moments
The particle is discretized into Nbc cubic cells Ωn ,of side 𝒄𝒏 ≤

𝝀𝒔

𝟏𝟎
; 𝝀𝒔 =

𝝀𝟎

𝑹𝒆(𝜺𝒓)

Generation of the CBFs

𝒁 𝑬 = 𝑬𝒊𝒏𝒄 where Z is the 3Nbc x 3Nbc full matrix representing 

the EM interactions inside the particle.   

𝒁𝒊𝒊𝑬𝑴𝑩𝑭𝒔
𝒊 = 𝑬𝑰𝑷𝑾𝒔

𝒊

NIPWs incident 

plane waves

3) Computationally efficient calculation of the CBFs  :   

𝒁𝒄 α = 𝑬𝒄,𝒊𝒏𝒄

𝒁𝒄α = 𝑬𝒄,𝒊𝒏𝒄

where ෩𝒁𝒍,𝒄
𝒊𝒊 = 𝟎 if 𝒁𝒍,𝒄

𝒊𝒊 ≤ |𝒁𝟏,𝟏
𝒊𝒊 |/𝒇𝑺𝑹 𝒍, 𝒄 ≤ 𝟑𝑵𝒃𝒄

fSR is a threshold factor used to down-select

the elements of Zii whose magnitudes are

significant compared to | Zii
1,1|.

෩𝒁𝒊𝒊𝑬𝑴𝑩𝑭𝒔
𝒊 = 𝑬𝑰𝑷𝑾𝒔

𝒊

Sparse Direct Solver 

Makes possible the use of larger blocks

so a higher CR

2. The Sherman-Morisson-
Woodburry Formula-based algorithm

1. Sparse representation (SR) of the 
Macro-Basis Functions

 To solve the local EM problem, we apply a

multi-level Sherman-Morisson-Woodburry

Formula-based algorithm (SMWA) [4].

 The Sherman-Morrison Formula provides an 

explicit formula of the inverse of  𝑨 = 𝑩 − 𝒖𝒗𝒕

𝒁𝒊𝒊𝑬𝑴𝑩𝑭𝒔
𝒊 = 𝑬𝑰𝑷𝑾𝒔

𝒊

𝒁 =
𝒁𝟏𝟏 𝒁𝟏𝟐

𝒁𝟐𝟏 𝒁𝟐𝟐

𝑰𝟏

𝑰𝟐
=

𝑬𝟏

𝑬𝟐

Low rank 

factorization 

(ACA)

3-Levels SMWA : 

16 CPUs

64 GB 
of RAM

(per frequency )

Shared Memory worstation

Relative 'difference'

We calculate orientation averaged extinction, scattering

and backscattering efficiencies with the DDA-based code

DDScat and our full wave CBFM-based model NESCoP

(Numerically Efficient Scattering by Complex Particles)

ap = 0.89 mm; dm=6 mm;
15 ≤f ≤ 150 GHz

0.27 ≤ xp ≤ 2.79 |m|kd ≤ 0.37
Nbc =24385 cells 

The scattering efficiencies of the 
snow aggregate a0013 are averaged 

over 2700 incident directions (id)
@ f = 150 GHz when the aggregate 

is divided into 27 and 4 blocks. 

𝒉𝑩

⇢ 𝑵𝒃𝒊

0.8 mm  
⇢ 1175 

3 mm 
⇢ 6788

εACA -- -- 1e-2 1e-3

CR 39 166 164 164

Size of 

𝒁𝒄
1866 440 446 445

CBF

(min)

8 136 5 18

(𝐙𝐜)−𝟏

(min)

21 0.4 1 0.5

Impact of the SMWF-based 
algorithm on the computational 

cost and accuracy of NESCoP

165
faster than DDScat

a0000
ap = 1.61 mm; 
dm=11.45 mm;
16 ≤f ≤ 200 GHz
0.56 ≤ xp ≤ 6.74
|m|kd ≤ 0.37

Nbc =140896 cells 

In addition to its higher 

numerical efficiency, 

NESCoP converges 

faster (in terms of to/id) 

than DDScat.

> 8 days

64 min
215 min
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• Large-scale moderate-resolution (few- to sub-ha) products of forest height
and disturbance are essential for understanding the global carbon distribution
as well as its changes in response to natural events and human activities.

• Regarding this scientific need, the NASA-ISRO’s NISAR mission is going to
be launched in 2021. New methods using dual-pol (HH and HV) small-
baseline InSAR observations have been developed for spaceborne repeat-
pass InSAR missions like NISAR and also automated by designing a Python
software (https://github.com/leiyangleon/FSH/) that seamlessly works with JPL’s
InSAR processing software (ROI_PAC and ISCE).

• For the first time, a mosaic of forest height was generated for Maine and New
Hampshire using JAXA’s ALOS-1/-2 HV-pol InSAR data and compared with
airborne lidar and field inventory data over both flat and mountainous areas.
With the HH-pol InSAR data, forest disturbance such as selective logging is
not only detected but also quantified in subtropical forests of Australia
(compared against NASA’s Landsat).

Introduction

Forest height results

Methodology

Forest disturbance results

Conclusions
• These new methods enable the automatic retrieval of forest height and disturbance
from NISAR-like spaceborne repeat-pass missions for the very first time, which
partially relieves the burden of launching the twin satellite (~$500M) to form a tandem
mission (state of the art) for this type of study.

• Although easily affected by precipitation, the operational simplicity and efficiency
make these methods a potential observing prototype for NISAR-like missions as they
are particularly designed for data with single and small spatial baseline, dual
polarization, moderate/large temporal baseline, complicated underlying topography.

(Lei et al., 2017a)

(Lei and Siqueira, 2014) (Lei et al., 2017b)

HV-pol HH-pol

12 days later
Geometric 
correlation

Thermal noise
correlation Volume&temporal

correlation

Disturbance 
correlation

Forest height Disturbance Index
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Welcome to the FSH wiki!

This Forest Stand Height (FSH) Python software performs the automated forest height
inversion and mosaicking from spaceborne repeat-pass L-band HV-pol InSAR correlation
magnitude data (e.g. JAXA’s ALOS-1/2, and the future NASA-ISRO’s NISAR) that have been
pre-processed by JPL’s ROI_PAC and/or ISCE programs.

This GitHub repository consists of a folder of FSH source codes ("FSH/scripts/"), a user's
manual ("FSH/README.md"), a license file ("FSH/LICENSE"), two test example folders with
one for ROI_PAC products ("FSH/test_example_ROIPAC/") and the other for ISCE products
("FSH/test_example_ISCE/"), as well as an illustration of the sample FSH mosaic map
("FSH/preview.jpg").

The current version of the software can handle both ALOS-1 (processed by ROI_PAC or
ISCE), ALOS-2 (processed by ISCE) data, as well as the future NISAR data (as long as
pre-processed using ISCE).

Please follow the manual "README.md" (which is self-explanatory) to install the
per-requisite Python packages as well as the FSH software, and understand the basic
workflows.

1. 

Due to the limited storage space within this repository, the image files of the two test
example folders were not uploaded here but can be downloaded at external web links.
Please follow the instruction notes within each test example folder here to download and
process the sample images.

2. 

The above picture on this homepage illustrates the final mosaic map of FSH on top of
Google Earth by processing the image data contained in the test example folders using
the FSH software.

3. 

This software is simple to use and efficient in creating the FSH mosaic maps because once

leiyangleon / FSH

Code Issues 0 Pull requests 0 Insights 
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0 (“no disturbance”) → 1 (“deforestation”)

Ø Two-state Forest Height Mosaic

Ø Comparison with airborne lidar data 

Ø Comparison with field measurement 

FIA ALOS-1 mosaic

NSRC

Lidar RH100 ALOS-1 single ALOS-1 mosaic ALOS-2 single

Lidar RH100

ALOS-1 single

ALOS-1 mosaic

ALOS-2 single

MountainousFlat

Ø Multiple-scene mosaicking

Ø Shorter temporal baseline

To improve resolution/accuracy

Ø Forest height map (HV-pol data)

Ø Forest disturbance map (HH-pol data)

Ø Comparison with Landsat-derived DI data
Before logging After logging Differential (DI)

ALOS-derived DI

Selective logging

NRMSE = 13%
R = 0.79

0.8-ha forest stand
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(Lei et al., 2017c)

InSAR correlation
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Ø Use lidar training samples to determine 
temporal change parameters

Ø Use SAR backscatter power to estimate 
small vegetation height

Ø Use forest/non-forest mask to correct 
for the scene-wide forest mean 𝛾/&1
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