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1. Introduction: diffuse emissions of heat

A major challenge in natural disaster management revolves around detecting precursors of volcanic eruptions.
Volcanic eruptions are preceded by the ascent of hot material to the Earth surface, although the pre-eruptive
thermal footprint is subtle. Rather than looking for pre-eruptive hot spots [e.g., 1-3], whose predictive ability
remains controversial [4], here we explore the diffuse emissions of heat (Fig. 1).

Approach: Analysis of long-wavelength thermal infrared
data retrieved from the MODIS instruments onboard
Terra and Aqua satellites [5].

Research Questions:

Do diffuse emissions of heat vary significantly
before volcanic eruptions?

Can we forecast volcanic eruptions by
monitoring diffuse emissions of heat from space?
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Target volcanoes: Ruapehu (New Zealand), Ontake
(Japan), Redoubt (Alaska; USA), Puyehue (Chile), and
Domuyo (Argentina).

2. Data processing: median-of-median algorithm

1

5. Results II: thermal-deformation coupling. Is magma rising to the surface? 

3. Montecarlo experiments: design of an efficient denoising technique 4. Results I: application to four active volcanoes

6. Conclusions and implications for volcano monitoring

2

3

4

This is the first time that pre-eruptive diffuse emissions of heat, which is related
to diffuse degassing, have been detected from space.

Recognizing trends of volcanic origin in 𝑇𝑇𝑇𝑇𝑇𝑇 time series is difficult due to seasonal effects and noise (Fig. 2B).
To unveil long-term (~ years) trends, first we analyze through Montecarlo experiments the efficiency of
several denoising techniques. Our experiments show that a combination of wavelet and median filters is
suitable to detect long-term trends in 𝑇𝑇𝑇𝑇𝑇𝑇 time series with signal-to-noise ratio as low as ~0.1 (Fig. 3).

We define the Thermal Emission Difference as 𝑻𝑻𝑻𝑻𝑻𝑻 = 𝑳𝑳𝒗𝒗 − 𝑳𝑳𝒔𝒔 (Fig. 2B). 𝑻𝑻𝑻𝑻𝑻𝑻 is expected to capture
the warming of the volcanic edifice with respect to the surroundings.

We calculate the median of the values of 𝐿𝐿𝑣𝑣∗ and 𝐿𝐿𝑠𝑠∗ of every day. This produces the daily median
radiance emitted by the volcanic edifice (𝐿𝐿𝑣𝑣) and surroundings (𝐿𝐿𝑠𝑠), respectively.

We choose a region of interest (ROI) of ~1,000 pixels centered on the target volcano (Fig. 2A). Then, we
calculate the median radiance emitted by the volcanic edifice (𝐿𝐿𝑣𝑣∗ ) and surroundings (𝐿𝐿𝑠𝑠∗ ).

We retrieve radiance data (band 31: 10.780-11.280 µm) since July 1st, 2002, from the Level 1B
calibrated and geolocated MODIS products with ~1x1 km pixel resolution.

Figure 1. Diffuse emissions of heat at active volcanoes.
Background image is Redoubt volcano (Google Earth).

Figure 3. Examples of denoising of two synthetic 𝑇𝑇𝑇𝑇𝑇𝑇 time series (arbitrary units). Synthetic 𝑇𝑇𝑇𝑇𝑇𝑇 time series are generated by adding a
periodic signal (1-year periodicity), Gaussian noise, and a linear trend (top) or sinusoidal trend (bottom). Long-term trends are recovered
(red) by applying to the synthetic 𝑇𝑇𝑇𝑇𝑇𝑇 time series ten maximal overlap wavelet transform filters and a 1-year trailing moving median filter.

The denoising technique is applied to
the 𝑇𝑇𝑇𝑇𝑇𝑇 data to obtain the Filtered
Thermal Emission Difference (𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸 )
time series. We find that (Fig. 4):

Synthetic TED 
time series = Seasonal 

component + Noise + Long-term 
trend
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Figure 4. 𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸 time series for: (A) Ruapehu; (B) Ontake; (C) Redoubt; and (D)
Puyehue. Solid lines, dashed lines, grey shaded regions, and thickness of red lines
represent the onset of major eruptions, the onset of minor explosions, eruption
duration, and uncertainty (obtained with bootstrapping), respectively.
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Diffuse emissions of heat
increased before eruptions

Eruptions occurred at 
high values of 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

Domuyo is a volcanic caldera that has been inflating since
2014. However, heat emissions were not concomitant
and are phase shifted (Fig. 5A), suggesting that magma is
not rising to the surface. We explore this by modeling the
link between diffuse degassing and magma reservoir
pressure (proxies for diffuse heat and deformation) (Fig.
1). Our preliminary results suggest that (Fig. 5B):

This likely reflects hot gas circulation in 
the crust and greater diffuse degassing

[6] (heat conduction is not efficient)

Figure 5. Thermal-deformation coupling. (A) FTED (line) and deformation (circles) times series. Inflation source is at ~6 km depth. (B)
Example of the output of our forward model, which solves the Navier-Stokes equation for gas permeable flow. We assume reasonable values
for the parameters involved (permeability, porosity, size and depth of magma reservoir, etc.). Details of the model can be found in [7, 8].

Inflation of volcanic calderas does 
not necessarily mean magma ascent 
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Figure 2. Data processing. (A)
Example of the scenes analyzed. (B)
Example of 𝑇𝑇𝑇𝑇𝑇𝑇 time series. The area
covering the volcanic edifice is
defined as the region with 50 to 100
pixels with lower radiance. This
approach is valid as long as the
volcanic edifice is colder than the
surroundings due to altitude effects.
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Permeable gas flow through the crust can 
produce spontaneous (and phase shifted) 

oscillations of heat emissions and deformation 
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Our methodology can be automatized to detect volcanic unrest and thus better
forecast eruptions. For example, the last eruption of Ontake volcano (2014), which
killed 63 people because warning signs were not identified with traditional
monitoring methods (e.g., seismicity) [9], could have been forecasted through
satellite-based thermal monitoring (Fig. 4B).

The combination of our thermal infrared methodology with geodetic analysis can
provide new insights on the processes governing the dynamics of active volcanoes.
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Spatiotemporal characterization of tectonic signals from geodetic data:
The 2010 El Mayor-Cucapah, Mw 7.2, post-seismic deformation

Adriano Gualandi (329A) and Zhen Liu (329A) 
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Space Administration

GOAL: Understand the connection between post-seismic deformation processes and seismic activity
DATA: Daily continuous GPS (cGPS) position time series
PROBLEM: How to separate and model multiple simultaneously active deformation signals (tectonic and non-tectonic)?
SOLUTION: Blind source separation algorithms to retrieve process related signals and model them independently

In particular, we use the variational Bayesian Independent Component Analysis (vbICA) approach (Gualandi et al., 2016, 
JOGE; 2017a, GRL; 2017b, GRL; 2017c, Tectonophysics; Serpelloni et al., 2018, JGR; Nespoli et al., 2018, Geofluids)

1 - DATA
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4 - RESULTS AND NEXT STEP

3 - METHODOLOGY

2 - EL MAYOR-CUCAPAH EARTHQUAKE

• At least 2 ICs to explain tectonic signals
• Shallow afterslip explains rapid decay
• Deep afterslip explains slow decay 

horizontal displacements, but not vertical
• Seismicity cluster related to EMC: slow 

decay and broad region of interest
• Seismicity cluster related to OCO: rapid 

decay and narrow region of interest
• Future work: Viscoelastic relaxation model 

to fit IC1 vertical pattern

Inversion scheme (modified from Kositsky
and Avouac, 2010, JGR).

Poster No. EA-02 

Study region, map 
view (modified 
from Wei et al., 
2011, Nat. Geo.). 
White/Red arrows: 
Horizontal 
data/modeled co-
seismic motion. 
Fault geometry for 
modeling: extended 
from Huang et al., 
2017, JGR.
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A Shift from Drought to Extreme Rainfall Drives a Stable 
Landslide to Catastrophic Failure

Alexander L. Handwerger (329-A), Mong-Han Huang (U of Maryland), Eric Fielding (329-A),
Adam Booth (Portland State U), and Roland Bürgmann (UC Berkeley)
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3. Methods
Satellite and Airborne InSAR

• Radar data provided by ESA Copernicus Sentinel-1 A/B (S1)

satellites and NASA Uninhabited Aerial Vehicle Synthetic

Aperture Radar (UAVSAR) airplane.

• Radar interferometry (InSAR) is processed with the InSAR

Scientific Computing Environment (ISCE) software package

developed at JPL/Caltech and Stanford7.

• We use 3 line-of-sight measurements (2 from S1 and 1 from

UAVSAR) to invert for 3D displacements (Figure 2).

• We construct time series inversions with the Generic InSAR

Analysis Toolbox8 (GIAnT; Figure 3).

4. Results
• The Mud Creek landslide displayed a minimum of 8 years of

stable sliding prior to its catastrophic failure (Figure 2).

5. Concluding Remarks
• A large increase in pore fluid pressure that occurred during a

shift from historic drought to record rainfall triggered a large

increase in velocity and overcame the stabilizing mechanisms

that had previously inhibited runaway acceleration (i.e. unstable

sliding).

• Given the predicted increase in precipitation extremes with a

warming climate6, we hypothesize that there may be an

increase the occurrence of landslides in California and we

expect it to become more common for landslides to transition

from stable to unstable motion.

• Between 2015 and 2017, California transitioned from a historic

drought to extreme rainfall.

• On May 20, 2017, the Mud Creek landslide (Figure 1), located

near Big Sur, California failed catastrophically after a prolonged

period of heavy rainfall and destroyed California State Highway

1 (CA1). CA1 remains closed at this location.

• Mud Creek displayed seasonal velocity changes driven by

precipitation-induced changes in pore fluid pressure (Figure 3).

• Minimum velocity and pore fluid pressure values occurred during

the drought of 2015 and maximum values occurred during the

extreme rainfall of 2017.

• Mud Creek displayed a divergence (i.e. second period of

acceleration) from its characteristic seasonal velocity patterns

leading up to catastrophic failure (see red rectangle in Figure 3).

Figure 2. InSAR velocity maps of Mud Creek landslide. a, Average horizontal velocity with
velocity vectors draped over a hillshade of the topography. CA1 shown with black and white line.
Reference pixel corresponds to a stable area outside the landslide. b, Average vertical velocity with
negative values indicating downward motion. The azimuth and look direction of the Sentinel-1A/B
and UAVSAR instruments are shown with black and orange arrows in the legend. S1 and UAVSAR
track numbers are also listed.

1. How do fluid pressure perturbations 
control the behavior of landslides?
• Fluid pressure perturbations from precipitation and

snowmelt can trigger landslides.

• Once they occur, some landslides display stable sliding,

some display unstable sliding (i.e. catastrophic failure), and

some transition from stable to unstable sliding.

• Here we seek to understand this transitional behavior.
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2. Study site: The California Coast Ranges
Figure 1. Northern and Central
California Coast Ranges. a,
Elevation and Franciscan Complex
lithologic unit 1 and San Andreas
fault1 draped over a hillshade of the
topography. Black polygons show
mapped inventories of slow-moving
(i.e. stable) landslides2-5. b and c,
Google Earth images of the Mud
Creek landslide before and after
catastrophic failure. Solid black and
dashed black polygons shows pre- and
post-catastrophic failure landslide
boundaries.

Landslides are pervasive in

the California Coast Ranges

due to active tectonic uplift,

mechanically weak rocks

(Franciscan Complex), and

high seasonal precipitation.

Precipitation extremes (i.e.

dry-to-wet years) are

predicted to rise in California

over the next several

decades due to global

warming6.

Pore fluid pressure diffusion model
• We model precipitation-induced 

changes in pore fluid pressure using a 

simple 1D linear diffusion equation 

(Figure 3). 

Figure 3. Velocity,
precipitation, and
modeled pore-water
pressure time series for
the Mud Creek
landslide. Data is
condensed into a single
calendar year. The
normalized pore pressure
is defined as the pore
pressure divided by the
maximum value over the
study period. Water years
(WY) are defined as the
period between Oct. 1
and Sep. 30.
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I. Introduction
Advances in Geodetic techniques enable us to detect slow earthquake transients (e.g. Slow-Slip Events, SSEs) with improving accuracy and coverage. Recent observations
reveal intriguing changes of slow slip transients before or after large earthquakes. However, the physics behind these observations remain largely unknown. How does SSE
pattern change during a mega earthquake super-cycle? How do SSEs respond to “external” tectonic perturbations such as stress perturbation from an earthquake, or non-
tectonic forces such as tidal modulation and seasonal loading? Can SSE pattern changes shed light on the onset of a large earthquake? To address these questions, we employ
laboratory-based rate-and-state friction on subduction zone faults with realistic frictional properties incorporating megathrust earthquake and SSE regions.

II. Observations

III. Intrinsic SSE Variability 

III. SSE Pattern Change Due to External Perturbation 
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SSE intrinsic variability in super-cycleSlip rate of megathrust earthquake and SSE

Model results suggests 
significant SSE pattern change 

of interval + slip (rate) right 
before megathrust earthquake:

Observable feature!

Rate-and-state subduction model
Realistic subduction zone settings:
Megathrust earthquake region
Generating megathrust earthquakes 
every ~ 1000 years.
SSE region
Generating slow-slip events
every ~ 5 years.

The interaction between the SSE region 
and the megathrust earthquake region 
naturally forms a “super-cycle” and SSE 
pattern evolves over different stages of 
the super-cycle. 

Other than the intrinsic SSE variability due to the interaction of SSE 
and megathrust earthquake region, SSE pattern may also be affected 
by external perturbations, e.g. earthquakes.
The effect of such perturbation is approximated by three components: 
Co-seismic dynamic perturbation: Gaussian.
co-seismic static perturbation: short-term linear ramp-up.
post-seismic perturbation: long-term linear ramp-up.
Combination of such three components can also approximate other 
perturbation sources, e.g. tidal modulation, surface loading / 
unloading, etc.

Co-seismic static stress perturbations with various 
amplitude and imposed at different stages of the 
SSE cycle:

� SSEs will be advanced with co-seismic static 
stress perturbation. 
� The amount of advancing in general is roughly 
proportional to the perturbation amplitude. 
� A ~ 6 KPa co-seismic static perturbation is 
sufficient to advance the next SSE by ~ 1.3 years. 
� Large (> 20 KPa) co-seismic static perturbation 
can triggered the next SSE (almost) immediately.

Co-seismic dynamic stress 
perturbations with various 
amplitude and imposed at 
different stages of the SSE 
cycle:

� SSE triggered only at very 
large (> 200 KPa) amplitude 
of perturbation.
� Next SSE delayed.

Post-seismic stress 
perturbations with various 
amplitude and duration:

� SSEs advanced.
� Amount of advancing 
proportional to amplitude. 
� A ~ 10 KPa advance the 
next SSE by ~ 2 years. 
� Long-duration perturbation 
affect multiple SSEs.

IV. Conclusions
“Intrinsic variability”: The interaction between the SSE region and the megathrust region will cause intrinsic variabilities to the SSE pattern, which changes the slip pattern and
recurrence intervals during the entire course of the megathrust super-cycle. More importantly, in the last several cycles of SSE right before the next megathrust earthquake (tens of
years in our simulation case), the SSE recurrence intervals will rapidly decrease, accompanied by a rapid decrease of SSE peak slip rate (and slip) simultaneously.
“External effect”: The modeled SSE pattern changes in response to the co-seismic and post-seismic stress perturbation suggest that even a remote earthquake can significantly
change the spatiotemporal pattern of SSEs due to the low stress-drop nature of SSE and its proneness to stress perturbations.

https://github.com/ydluo/qdyn
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� The remote, long-term SSE in 
Bungo Channel region occurred 
after the 2011 Tohoku earthquake 
was advanced by ~ 2 year and 
shows different slip distribution.

� The local, Boso SSE has 
continuously shortening in 
recurrence interval before the 2011 
Tohoku earthquake, and was 
triggered immediately after the 
earthquake, next SSE advanced.

� Similar observation in New 
Zealand and Mexican subduction.

DISCLAIMER: Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the 
United States Government or the Jet Propulsion Laboratory, California Institute of Technology.
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Hurricane Harvey 

Land Subsidence From Water Loading 

?

GPS station 

      Water load      Earth’s surface

26 ±3 km3

GPS Filtering - Independent Component Analysis (ICA)

2 ±2 km3 20 ±5 km 22 ±6 km 13 ±3 km 24 ±3 km

26-Aug-2017 27-Aug-2017 28-Aug-2017 29-Aug-2017 30-Aug-2017

31-Aug-2017

Inversion Result: Daily Estimate of Water Storage

26 ±3 km 20 ±2 km 18 ±2 km 14 ±1 km 2 ±1 km

31-Aug-2017 01-Sep-2017 10-Sep-2017 20-Sep-2017 30-Sep-2017

3

Hurricane 

Harvey

Below left, forward model, Gm = d. Loading of Earth’s elastic crust from a disk of water (of 
unknown thickness m) causes land subsidence, which can be measured using GPS (d). 
These data can be inverted to estimate water volume.

Left, evolution of 
water storage esti-
mated from invert-
ing data above. 
Model values (blue) 
show estimated 
thickness of water 
disk (Fig. 2), provid-
ing total water 
volume each day 
(lower left value).

          made landfall in south Texas lasting seven days and de-
posited 103 km of water as it migrated across the Gulf coast.

We demonstrate continuous GPS data can track daily changes of water storage during and fol-
lowing a major hurricane, suggesting a new role for GPS as a flood monitoring system. 

Inverting GPS data shows one-third of Harvey’s total water was captured and retained on land, 
taking 5 weeks to dissipate at a rate of 1 gigaton/day. 

100 km

Water extent constrained from GPS can be applied to future hurricane events, that can help im-
prove opertaional flood forecasts of downstream river and dam levels used by flood managers, 
and help fill in data gaps of GRACE which has montly resolution. 
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      During a hurricane we can measure precipitation (below), however, 
what happens to that water once deposited? Can we track terrestrial water 
storage and its dissipation following a major hurricane? This is important 
for monitoring the extent of flooding, estimating recovery time of the drainage 
system and accuratley forecasting downstream river levels. 

       Our objective is to constrain daily changes in water storage deposit-
ed by Hurricane Harvey by using GPS data that measures solid Earth’s elastic 
response to water loading.

At time of writing this study was in review in Science Advances 

3 3 3 3

3 3 3 3 3

  
  The  vertical component of GPS is particularly noisy due to the suboptimal satellite ge-
ometry relative to receiver, antenna phase center variations and atmospheric corrections. To 
resolve this we use independent component analysis (ICA), a statistical feature extraction 
technique, to remove common-mode error (systematic bias) and extract the hydrologic signal. 

  
Daily estimates of flood extent is challenging, GRACE has monthly and 300 km 
resolution (too coarse), optical and radar image aquistion can take days and 
can’t measrue water depth, while field surveys are point estimates that are spa-
tially limited. 
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  GPS positions are processed using JPL’s GIPSY-OASIS II software.

First component exhibits near-uniform 
spatial motion (top), with no clear devia-
tion in positions during arrival of Harvey 
(red line). This component reflects 
common-mode error and is removed. 

This component indicates sta-
tions around Houston (top) ex-
hibit marked subsidence 
during initial landfall of 
Harvey (bottom).

Third component indicates sta-
tions around west Louisiana (top) 
exhibit marked subsidence 
during second landfall of 
Harvey (bottom)
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An example of a filtered vertical position timeseries from a GPS station in Houston. 
Recombining the 2nd and 3rd components from above removes systematic bias, ex-
tracts the hydrologic signal, and removes motions local to the GPS station

d = data,  v = vertical, e = east, n = north
G = Greens function’s 
m = water thickness on day (t) 
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Filtered GPS Data (d)  

Model Prediction (Gm)

Filtered GPS motions 
each day during ar-
rival of Hurricane 
Harvey. GPS subsid-
ence (yellow) corre-
sponds closley with 
position of Harvey’s 
eye (red dot) across 
Gulf coast over 7 day 
period. This is followed 
by gradual uplift over 
~5 weeks. These data 
are inverted to estima-
tre water storage. 

Forward result (left) 
from our best 
model (shown 
below). Our model 
predicts subsidence 
around Houston that 
corresponds with mi-
grating position of 
Harvey, followed by 
gradual uplift indicat-
ing water dissipata-
tion. 
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Scaling a reference ice model 
(shades of grey, combination of 
ANU and IJ05) by regional 
coefficients (colors).

Parameters explored:
Earth rheology Ice history

Abstract
We provide a new analysis of glacial isostatic adjustment 
(GIA) with the goal of assembling the model uncertainty 
statistics required for rigorously extracting trends in 
surface mass from the Gravity Recovery and Climate 
Experiment (GRACE) mission.
Such statistics are essential for deciphering sea level, 
ocean mass, and hydrological changes because the latter 
signals can be relatively small (<2 mm/yr water height 
equivalent) over very large regions, such as major ocean 
basins and watersheds. 
With abundant new >7 year continuous measurements of 
vertical land motion (VLM) reported by Global Positioning 
System stations on bedrock and new relative sea level 
records, our new statistical evaluation of GIA 
uncertainties incorporates Bayesian methodologies. 
A unique aspect of the method is that both the ice history 
and 1‐D Earth structure vary through a total of 128,000 
forward models. We find that best fit models poorly 
capture the statistical inferences needed to correctly 
invert for lower mantle viscosity and that GIA uncertainty 
exceeds the uncertainty ascribed to trends from 14 years 
of GRACE data in polar regions.

Red: Vertical GPS velocities
Rest: Relative Sea Level indicators (up to 35kyr old)

Probabilistic approach to GIA:

Probability distribution of the lower mantle viscosity 
based on 128,000 model runs.

What is GIA? Data constraints

- We can calculate formal GIA statistics, 
including uncertainty.

- The classic "best-fit" approach leads to biased 
lower mantle viscosity, and thus long 
wavelength GIA.

- Bigger uncertainty in mass changes than 
GRACE's in polar regions. 
At the global scale, it represents about twice 
what had been speculated before.

- Check out our GRL publication "GIA Model 
Statistics for GRACE Hydrology, Cryosphere and 
Ocean Science", DOI: 10.1002/2017GL076644. 
Download our results at:
http://vesl.jpl.nasa.gov/solid-earth/gia

Take home messages

Present-day predictions and uncertainty:

a) b)

c)
d)

a) b)

b)a)

Vertical Land Motion (mm/yr): a) expectation, b) uncertainty

Relative sea level rate (mm/yr): a) expectation, b) uncertainty

Gravity rate (mm/yr Water Height Equivalent) 
a) and c) "GRACE uncertainty" (difference between 
JPL and CSR RL05 solutions)
b) and d) GIA uncertainty
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Conclusion

This• study used VPD, SM and EVI to predict the likelihood of monthly fire occurrences
across the US.

We• have validated the model across various landcover and GACC types. The result show
that the model can potentially predict the likelihood of fire occurrences with relatively small
margin of errors.

These maps can be useful in not only government operational allocation of fire management •
resources, but also improving understanding of the Earth System and how it is changing in 
order to refine predictions of fire extremes

Introduction

Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and
contributing significantly to both carbon emissions and changes in surface albedo. The
socioeconomic impacts of wildfire activities are also significant with wildfire activity results in
billions of dollars of losses every year. Numerous studies have aimed to predict the likelihood of
fire danger, but few studies use remote sensing data to map fire danger at scales commensurate
with regional management decisions (e.g., deployment of resources nationally throughout fire
season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And
Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared
Sounder (AIRS) vapor pressure deficit, MODIS Enhanced Vegetation Index (EVI) and landcover
products, along with US Forest Service historical fire activity data to generate probabilistic
monthly fire potential maps in the United States. These maps can be useful in not only government
operational allocation of fire management resources, but also improving understanding of the
Earth System and how it is changing in order to refine predictions of fire extremes.

Datasets

• GRACE (Gravity Recovery and Climate Experiment)-assimilated SM (Soil Moisture)

• AIRS (Atmospheric infrared sounder) Vapor Pressure Deficit (VPD)

• MODIS (Moderate Resolution Imaging Spectroradiometer) EVI (Enhanced Vegetation Index)

• Wildfire burned area from USDA (United States Department of Agriculture) Forest Service’s
Fire Program Analysis Fire-occurance database (FPA FOD)

• USGS (United States Geological Survey) National land-cover databse

• Spatial Resolution: 0.25 degree

• Temporal Resolution: Monthly

• Data Length: 2004-2013

Methodology

• Derive SM, VPD, EVI relationship with fire burned area in land cover types deciduous,
evergreen, shrub land, herbaceous, and wetland

• Divide the hydrologic variable range into 10 bins
• Calculate fire burned area:

!"#$%&'( )*+$, -#$& = /*0 1#+$, &#$& 2+ $&%ℎ 12+
("(&4 +*01$# " '&054$' 2+ $&%ℎ 12+

• Pick the hydrologic variable with highest correlation to the fire data

One look-up table is generated for each land-cover type. Once a real-time observation becomes
available, the corresponding look-up table will be utilized to predict the likelihood of fire
occurrence. Figure 2 shows look-up tables generated for land-cover type shrubland using 2-month
lead EVI observations. EVI shows highest correlations to the fire data in this land-cover type.

Figure 1:MODIS land-cover map

Figure 2: Model Development for Shrubland

Figure 3: a) Observation Residuals August 2013 ; b) Prediction Residuals August 2013 c)
Observation Probability of Residuals August 2013 d) Prediction Probability of Residuals
August 2013 e) RMSEAugust 2013 f) Time series of RMSE 2004-2013

(a) (b)

(c) (d)

(e) (f)

Results

• Use the developed algorithm to predict burned area for the 2004-2013 period

• Derive the residuals by removing the climatology from the prediction and observation values.
Figure 3a and 3b are the residuals of observations and predictions for August 2013 respectively

• The residuals are adjusted by empirically deriving the probability of residuals in each land-cover
type. The Gringorton empirical probability is used to derive the probabilities:

Where i is the rank of residuals data (observation or predictions) from the smallest (for each land-
cover type) , and n is the sample size. Figure 3c and 3d are the probabilities of observation and
prediction residuals in August 2013.

• To validate the model, we calculate the RMSE ( Root Mean Squared Error) of probabilities of
observations and predictions. This is performed via:

where Xobs is observed values and Xmodel is predicted values at time/place i. Figure 3e is RMSE for
August 2013. Figure 3f is the time-series of RMSE for the 2004-2013 period.
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INTRODUCTION 
RAPID (David et al., 2011) is a routing model based on the Muskingum method that is capable of estimating river streamflow over large scales with a relatively short computing time. 
This model only requires limited inputs: a reach-based river network, and lateral surface and subsurface flow into the rivers. The relatively simple model physics imply that RAPID 
simulations could be significantly improved by including a data assimilation capability. Here we present the developments of such data assimilation approach into RAPID. Given the 
linear and matrix-based structure of the model, we chose to apply a direct Kalman filter, hence allowing for the preservation of high computational speed. We correct the simulated 
streamflow by assimilating streamflow observations and correcting the lateral runoff.  Our results demonstrate the feasibility of the approach and show promise for our ability to 
assimilate SWOT river observations globally once the mission is in operation. This work is supported by JPL’s Western States Water Mission as well as NASA’s SWOT Science Team. 
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Streamflow before assimilation 
Streamflow after assimilation 
Assimilated in situ streamflow 
Validation in situ streamflow 

RESULTS OVER THE GUADALUPE AND SAN ANTONIO RIVER BASINS (TX) 
Data assimilation results for 6 months of simulations from Jan 1st, 2004 (Figure 2) over the Guadalupe and San-Antonio river catchments in Texas. Among all 36 in situ gauges available, 21 were assimilated 
(circles markers) and the 15 remaining were kept for validation (square markers). 

Figure 1: Assimilation 
scheme 

RAPID RIVER MODEL 
RAPID (Routing Applicat ion for Paral lel 
Computation of Discharges, David et al., 2011) is a 
river routing model based on the Muskingum 
method.  
 
The river catchment is modeled as a network of 
reaches N. A reach has only one downstream reach 
but can have several upstream reaches. The 1D 
M u s k i n g u m m e t h o d i s a d a p t e d t o t h e 
multidimensional network: 
 

(I-C1N)Q(t+1) = (C1+C2)Qe(t)+(C3+C2N)Q(t) 
 
For any reach, the updated streamflow is a function 
the surface/subsurface lateral inflow Qe from a Land 
Surface Model, the streamflow Q, and the streamflow 
from upstream reaches NQ. 
 
The routing model is parallelized and optimized to 
run rapidly with a minimal computational cost 
over large domains. 

DATA ASSIMILATION METHOD 
RAPID uses linear algebra and so we use the simple Kalman Filter to maintain computational 
efficiency. 
 
We assimilate daily-averaged in situ discharge measurements to correct the lateral runoff model 
input. The lateral runoff is available every 3 hours so we decided to correct the runoff daily-mean 
based on the day 8 runoff entries (Figure 1). 

Prior runoff (8 time-steps) 
day k 

Day k-1 Day k Day k+1 

Corrected 
discharge 

end of day k-1 

Prior discharge 
averaged over day k RAPID run 

1. Model 
propagation 
through one 
day 

Observed discharge 
averaged over day k 

Corrected runoff (8 time-steps) 
day k 

Assimilation (KF) 

2. Runoff 
update (KF) 

Corrected 
discharge 

end of day k 

3. Correction 
propagation RAPID run 

RUNOFF ERROR MODEL 
NLDAS VIC runoff is used as forcing for RAPID 
and will be updated through data assimilation. For 
the KF, the runoff error need to be estimated. 
 
NLDAS also provides runoff from two other models 
(MOSAIC and NOAH). The mean runoff over the 
three available models (VIC+MOSAIC+NOAH) is 
assumed to be the “true” runoff. 
 
The runoff error statistics is therefore estimated from 
the deviation of the VIC runoff from the “true” 
runoff. 

Streamflow before assimilation 
Streamflow after assimilation 
Assimilated in situ streamflow 
Validation in situ streamflow 

Figure 2: Assimilation results 

From David et al, 2011 

CONCLUSIONS & PERSPECTIVES 
-  Our method leads to improved simulations with an overall increase of the Nash-Sutcliffe efficiency. 
-  Future work is required to apply the method over larger continental/global scale domain (e.g. Western States of the United States) 
-  Method could also be applied to remotely-sensed data (e.g. Jason and/or SWOT altimetry measurements) 

REFERENCES 
- David et al, 2011, River Network Routing on the 
N H D P l u s D a t a s e t ,  2 0 1 1 ,  J o u r n a l  o f 
Hydrometeorology, 12, 913-934 
-  National Land Data Assimilation System 

(NLDAS): https://ldas.gsfc.nasa.gov/index.php 
-  Emery et al, 20xx,  in preparation 
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California’s groundwater resources are depleting. 
Accurate knowledge of California's groundwater 
is of paramount importance to sustain a multi-
billion-dollar agriculture industry during 
prolonged droughts. In this study, we develop a 
groundwater storage model for California's 
Central Valley using supply and demand 
information from the state. The model is then 
used to predict future changes in groundwater 
storage from downscaled climate projections.

Fig.1 (Left) The green basin boundary is the area 
used to downscale the precipitation projections. 
The brown boundary indicates regions where the 
aggregated groundwater storage changes are 
represented in this study.

Fig.5 (Bottom) The model is evaluated against 34 years of historic estimates of 
changes in groundwater storage derived from the United States Geological Survey's 
Central Valley Hydrologic Model (USGS CVHM) and NASA's Gravity Recovery 
and Climate Experiment (NASA GRACE) satellites. Yearly precipitation anomalies 
are shown in Panel A. Model Simulations in Panel B. Observed data in Panel C.

Fig.6 (Bottom) The calibrated model is used to predict future changes in 
groundwater storage under various precipitation scenarios. All simulations support 
the need for collective statewide management to prevent continued depletion of 
groundwater availability.

Groundwater extraction

Fig.2 (Left) 
Empirical relationships 
showing Department of 
Water Resources supply 
and demand variables with 
precipitation. 

This figure indicates how a 
given variable responds to 
precipitation each year.
For example, agricultural 
demand is greater during 
dry years or surface water 
supplies are higher during 
wet years.

Fig.3 (Right) 
Schematic representing 
conceptualized model 
structure. 
PP represents precipitation 
anomalies each year. 

Main Conclusion: It is clear that a comprehensive approach looking at both supply 
and demand side management strategies may be necessary to sustain groundwater 
levels in the future.

Fig.7 (Bottom) We then run the model with different management strategies. For 
this, we run the model with 20% changes of in each demand/supply variable, to 
examine sensitivity of groundwater storage to each variable. Model results show 
that increases in surface water supply and agriculture efficiency have a stronger 
potential to stabilize groundwater storage compared to urban water use efficiency 
and increased supply from recycle and reuse. 

Fig.4 (Bottom)
Butterfly chart obtained by 
driving the model with 
future precipitation. These 
estimates are fresh water 
demands during each year 
and the respective fresh 
water supplies of each year.

http://www.nasa.gov/
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1. Introduction

3. Moving Window Inversion Framework using SCOPE

1. Canopy structural and leaf photosynthesis parameters such as leaf area index (LAI), maximum 
carboxylation capacity (Vcmax), and slope of the Ball-Berry stomatal conductance model (BBslope) 
are crucial for modeling the canopy radiative transfer and plant physiological processes. 

2. These key ecosystem parameters have seasonal variability, are difficult to measure in-situ, and 
represent large sources of uncertainty for predictions of carbon and water fluxes in ecosystem 
models. 

3. Our hypothesis is that the inversion of detailed vertically resolved canopy model such as Soil 
Canopy Observation Photochemistry and Energy fluxes (SCOPE) with multiple canopy layers is 
able to retrieve the ecosystem parameters accurately using observations of carbon and energy 
fluxes 

2. Objectives
1. Development of a conceptual Bayesian non-linear inversion framework using SCOPE for 

estimation of ecosystem parameters using eddy covariance flux observations.

2. Demonstrating the retrieval and posterior error reduction of key ecosystem parameters using 
observations of carbon and water fluxes across different ecosystems. 

Fig.1 Illustration of moving window inversion retrieval setup. The bottom left part illustrates the ecosystem time series flux 
variables used for driving the SCOPE model. A n-day time window is selected for each retrieval in the yearly growing season 
and a time filter is implemented for concatenating the measurement vector in the retrieval windows. The top right shows the 
vector and matrix setup in the inversion framework. The bottom right shows the retrieved model parameters implementing the 
moving window approach. 

SCOPE is an integrated 1-D vertical radiative transfer and energy balance model. SCOPE utilizes the 
spectrally resolved visible to thermal (0.4 to 50 µm) infrared irradiation at the canopy top to derive the 
fluxes of water, energy, carbon dioxide and vertical profiles of temperature as a function of canopy 
structure and weather variables. 

Linearization of forward model (SCOPE) is given as follows (X represents the state vector):

5. Results – Parameter Estimations

Fig. 2 Figure showing the diurnal and seasonal variability of 
important environmental and meteorological forcings together with 
the tower observed fluxes of carbon and energy used in SCOPE 
model inversions for the Nebraska Mead flux tower site. 

5. Conclusions
1. Bayesian moving window inversion approach successfully retrieves key ecosystem parameters by 

constraining the SCOPE modeled carbon and water fluxes using eddy-covariance flux observations. 
2. Our model inversion results well captures the seasonal variability in the parameters in alignment with 

evidence from measurements . 
3. The developed framework is flexible to incorporate other (and any number of ) constraining 

measurements such as sun induced fluorescence, visible to shortwave reflectance, etc for estimating a 
range of physiological parameters such as chlorophyll content, entropies and activation energies of 
photosynthetic temperature dependence parameters.
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where X represents the state vector of parameters to be retrieved, p346

(X, p ⇢ X 0 and X 0 = X [ p) is a vector of parameters which represents347

those quantities that influence the measurement, are known to some accuracy348

but not to be retrieved. We call these parameters the forward functional349

parameters. In our example p represents the set of all fixed model (SCOPE)350

parameters not involved in the retrieval. The error term ✏ represents the351

measurement noise (e.g. noise or errors in the flux measurements). Given352

a set of measurements Y, the optimal state vector X̂ can be obtained by a353

generalized inverse method R represented as:354

X̂ = R(Y, p̂, Xa, c) , (6)

where p̂ represents the best estimate of the forward function parameters.355

The parameters Xa and c represents the parameters that do not appear in356

the forward function but they do a↵ect the retrieval and are associated with357

uncertainties. Xa represents the prior estimate of X and c represents any358

other parameters in the retrieval scheme as a catch-all for anything else that359

is used in the retrieval method, which also includes the convergence criteria.360

4. Linearization of the Forward Model361

A basic prerequisite for inverting the forward model is to compute its362

sensitivity with respect to input parameters, i.e. the partial derivatives with363

respect to all the state vector elements (Jacobi matrix). For linear models,364

the Jacobians are independent of the actual state. In our case, the SCOPE365

forward model is moderately non-linear and its Jacobians need to be com-366

puted numerically as analytical methods are currently lacking and hard to367

implement given some peculiarities in the FvCB equations.368

With the Jacobian matrix and a simple forward model call, we can thus369

write a first order Taylor expansion for the forward model370

F (X; p) = F (X; p)X=X
l

+
�F

�X

����
X=X

l

(X �Xl) , (7)

where Xl is an arbitrary linearization point, �F
�X is the partial derivative371

or Jacobian at the point X = Xl.372
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is also expected that the cost function will decrease corresponding to the400

decrease in �i from infinity to zero. The value of �i is sequentially updated401

at each iteration by evaluating the change in cost function. Here, we follow402

the general recommendations as outlined in [58, 56].403

The guidance for choosing the scaling matrix D is that it must be positive404

definite. For the current problem we choose it to be S�1

a (as in [56]) and apply405

the Levenberg Marquardt (LM) modification to the Gauss-Newton method406

(iteration equation C.8), resulting in the following iterative inversion scheme:407

Xi+1

= Xi+ [(1+ �)S�1

a +KT
i S

�1

✏ Ki]
�1{KT

i S
�1

✏ [Y �F (Xi)]�S�1

a [Xi�Xa]}
(11)

5.2. A Moving Window Set up of the Inversion Problem Using Flux Tower408

Observations409

Figure 6 top row shows the SCOPE model simulations of GPP, LE, H410

and SIF for one day (August 3, 2010) in the growing season for C
4

corn411

using data from the Nebraska Mead-1 flux tower site with parameter values412

V
cmax

= 50 µ mols m�2 s�1, BB
slope

= 7 and LAI = 4. The second, third and413

fourth rows from the top shows the numerically computed partial derivatives414

of GPP, LE, H and SIF with respect to the parameters using SCOPE with415

positive perturbations �V
cmax

= 5 µ mols m�2 s�1, �BB
slope

= 1 and �LAI416

= 0.5. Each column of figure 6 represents a row of Jacobian matrix used for417

the inversions. The figure clearly demonstrates the influence of each of the418

parameter variables in the state vector (X) on the modeled fluxes (F (X)).419

We can observe the counteracting nature of variables and the fluxes from the420

Jacobian. For example, V
cmax

has positive gradient for GPP but negative for421

LE and likewise for GPP fluxes, V
cmax

has positive gradients but BB
slope

has422

negative gradient. It can be noted that the nature of these gradients may423

vary depending on environmental conditions, such as incoming PAR as well424

as air temperature and vapor pressure deficit. This also creates diversity in425

the Jacobians over the diurnal cycle, which allows us to derive more than 2426

parameters from 2 sets of measurements (GPP and LE). In Figure 6, we have427

not only shown derivatives of GPP and LE but also H and SIF (not used428

here). In this manuscript, we outline the general framework of parameter429

inversion, which can easily be modified to make use of more measurements430

such as H, SIF, reflectance or thermal emissions, all of which can be modeled431

with SCOPE.432
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In our case the cost-function is not perfectly quadratic, moreover the Jacobians are not constant making 
the problem non-linear and thus requires the stepwise Levenberg-Marquardt method for solution.

Fig. 4 Figure showing the seasonal variability in retrieved 
parameter values of Vcmax, BBslope and LAI for the Nebraska Mead-1 
site using a 3-day moving window inversion approach for the year 
2010. The actual points in the time series (grey lines) of the GPP 
and LE fluxes used as the target observations (Y) for the moving 
window inversion approach are shown in the background. 

Fig. 3 Figure showing the evolution of the 
Jacobian Matrix for one retrieval window 
(DOY 213-216) for the Nebraska Mead-1 
site in 2010. The normalized mismatch 
Yerror between the observation and modeled 
vector (observed minus modeled) for the 3-
day window composed of GPP (indices 1-
24) and LE (indices 25-48) time series 
concatenated together for each retrieval 
iteration is shown in panel (a). The 
normalized gradients of the forward model 
(SCOPE) with respect to the variables in 
the state vector after each 
update step of the LM algorithm are shown 
in the panels (b), (c) and (d) respectively. 
The gradient decreases with each iteration 
and the observations of GPP are weighed 
more for Vcmax, Observations of LE more 
for BBslope and both for the LAI retrievals. 

The Bayesian optimal inversion framework is applied to different ecosystems consisting of both C3 and 
C4 photosynthetic pathways:

1. Results for Nebraska Mead-1 Site with C4 corn crops

2. Results for Missouri Ozark Site with C3 deciduous vegetation

Fig. 5 Figure showing 
the seasonal 
variability in retrieved 
parameter values of 
Vcmax, BBslope and LAI 
for the Missouri 
Ozark site using a 3-
day moving window 
inversion approach 
for the year 2010. 

1. The inversion is implemented in plain vanilla form current window to the next, with the estimated 
state vector (X) of the previous window as the first guess  (but not prior) for the current window. 

2. A convergence criteria is implemented based on the ratio of true error to the expected error for each 
iteration step.

3. A purely diagonal prior error covariance matrix with zero off-diagonal elements are used for the 
retrievals.

4. The posterior error covariance matrix may contain off-diagonal elements indicating if the retrieved 
parameters are truly independent.
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Degradation Simulation
Logging simulation parameters are based on a published study reporting on roads, 
loading decks ,skid trails and gap damage from a selectively logged forest in Brazil 
(Feldpausch et al., 2005).  The whole process is automated.

The simulation results were tested against the results reported in the reference 
study (Feldpausch et al., 2005), for the same logging intensity (2.2 trees/ha).

Results

Validation of method

Road width: 8m, avoiding trees>40m
Deck size: 340m2

Deck density: 0.06/ha
Skid trail width: 4m, (max H=20m), optimized 
paths connecting trees, leading to decks.

Primary road

Skid trail

Tree crown (location after felling), 
diameter proportionate to crown area
Tree trunk (location after felling), width 
proportionate to diameter at breast 
height (DBH)
Tree base (at location x,y of standing 
tree)

50ha plot as seen from above, with 2.2 logged trees/ha

N

100m

50
0m

Individual Tree  Crown (ITC) detection in a 50ha plot, based on Ferraz et al., 2016. All points belonging to the same 
tree are assigned the same  color for visualization purposes. Point density: 10pts/m2

The simulation gives similar results in terms of number of trees removed (roads, 
decks, skid rows) and crushed (felling), and their diameter range. This validation was 
necessary to proceed and test other logging intensities scenarios.

Impact of logging on biomass estimation and forest structure based on 50  plots of 1ha. Results for logged 
scenarios were obtained by repeating the simulation 100 times. MCH: Mean top Canopy Height.

Lidar_simulation Reference Validation
Roads

N trees/ha 14.8 5 Higher road density
mean DBH ± sd 23.5 ± 21.8 -

Decks
N trees/ha 0.9 1

mean DBH ± sd 28.7 ± 38.9 -
Skid Trails

N trees/ha 10.32 12
mean DBH ± sd 15± 12.1 14 - 18

Felling (collateral damage)
N trees/ha 13.82 13-25

mean DBH ± sd 14.9 ± 13.4 18 - 19

Number of returns (n = 0 to 5000)

Logging mainly impacted the higher part of the waveforms (>25m). This might be 
exaggerated by the fact that there are less Lidar returns in the lower part of the 
vertical structure of the forest. Skid trails are only detected using RDM and don’t 
affect the canopy.

area with � standard deviation around the mean of intact forest (non significant difference)

Conclusion

*United Nations Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation in Developing Countries

Introduction
Developing countries are required to report their carbon emissions to benefit from 
UN-REDD* programs. They need tools to accurately evaluate the state of their forests.  
Forest degradation is a disturbance due to anthropogenic changes and is considered a 
major source of carbon emissions. Unlike deforestation, forest degradation is difficult 
to detect, especially selective logging. The detectability and thus the impact of 
logging are therefore poorly understood. 
Here, we simulate various intensities of selective logging based on a small footprint 
Lidar point cloud in a 50ha area in Barro Colorado Island, Panama. The goal is to 
determine if logging can be detected using a single dataset, without information on 
pre- and post-logging activities.

Canopy Height 
Model (CHM)

Large Canopy Trees 
Area (LCA) 
(H>30m, 
Crown area>100m2)

Our approach is able to simulate forest degradation with similar results reported in 
the literature based on field data.
Although low intensity logging is detectable with RDM, it has a non-significant 
impact on biomass loss, provided that the logging intensity is below 2 trees/ha. 
Biomass loss from more intensive logging activities can be detected if the mean and 
standard deviation of  the forest structure (MCH, LCA, RDM) are known.

Example of a 400m by 400m subset, with N trees logged/ha

Waveform
(histogram of
returns)

Logged trees: 2.2 tree/ha (chosen randomly), DBH>60cm 
(or H>30m), gap damage around the crown and along the 
fallen trunk
Felling direction: random
Terrain: Flat: topography not taken into account.

The location of the trees to be harvested and the direction of their felling are 
random, allowing for multiple simulations (n=100) for robust results. 

H
ei

gh
t (

m
)

10

50

0

40

30

20
intact
logged

1000m

3D view

1000m

500m

intact N=1

M
ea

n 
LC

A
 (%

)

R
D

M
 >

50
%

  (
%

)

Future work and other applications
Forest regrowth will be added to the simulation, allowing for detection  of 
degradation through time.
This new methodology can be modified and applied to any kind of disturbance, 
including natural (blow out, drought) and anthropogenic (fires, deforestation) 
disturbances, providing a powerful tool to understand and predict the impact of such 
events.

1m res

1m res

0 >35m

N=2 N=3 N=4 N=5

N logged trees/ha N logged trees/ha

Allometric equation from Meyer et al., 2018

N logged trees/ha

M
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A

G
B

 (M
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)

Biomass loss based on MCH is not significant until  more than 2 trees/ha are logged. 
This suggests that low intensity logging activities don’t have a significant impact on 
biomass loss. RDM change becomes significant at 1 logged tree/ha. 

N

Loading deck

Relative 
Density 
Model 
(RDM)

10m res

AGB = 2.33 MCH1.43

Secondary road

0m
1m

10m

RDM = (N1-10m/N0-10m) x 100
D’Oliveira et al., 2012

RDM < 50%
RDM > 50%

http://www.nasa.gov/


Rank corr 
(* significant) 

Dust 
activation DAOD 

Frequency of 
High Wind 
Speed 

0.45 0.26 

15-month 
Precipitation -0.60* -0.71* 

Amount of 
vegetation -0.52* -0.82* 

Dust sources in North Africa and Middle East determined from  
MISR satellite observations 
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Introduction 
•  North Africa and Middle East: global dust hotspots.  
•  Inconsistent dust source maps from current satellite-based dust source 

identification approaches due to their own limitations: 
Ø  Aerosol loading approach dust source = high aerosol loadings, 

detected by e.g. satellite aerosol optical depth (AOD) – rely on 
retrieval assumptions, saturates at high AOD values. 

Ø  Dust tracking approach tracks dust plumes based on Brightness 
Temperature difference detected by geostationary satellite 
instruments – miss-classification between desert surface, dust, and 
clouds. 

•  Substantial increase in AOD over the Middle East since the onset of 
the 21st century has been revealed from various observations, but 
remains unclear (1) if it is a long-term trend and (2) what is the source.  

Objective 
•  Combine a novel plume-motion with the dust-loading approaches to 

identify dust sources in the North Africa and Middle East.  
•  Revisit the recent trends and interannual variability in dust activation 

and dust concentration in the North Africa and Middle East. 

Method 
•  Plume-motion: dust plume height and motion in the cloud motion vector 

product (CMVP) provided by Multi-angle Imaging SpectroRadiometer 
(MISR) aboard the polar-orbing Terra satellite 
Ø  Geometrically derived, no saturation problem.  
Ø  A “dust activation event” is identified when the dust plume moves faster 

than 10 m s-1 and the plume top height is within 2 km of the ground. 
•  Dust-loading: MISR nonspherical (dust) AOD (DAOD)  

Ø  MISR detects particle shape classes. 
Ø  Dust is the primary nonspherical aerosol particle especially over 

deserts. 

MISR CMVP identifies dust sources at geographical depressions. 

•  The West African deserts are active dust sources according to MISR CMVP 
but not according to previous AOD-based approach. 

•  West African dust storms are often characterized by optically thick dust 
walls, which cannot be retrieved using aerosol-loading approaches. 

 

Seasonality in dust activation and concentration is driven by 
wind speed and precipitation.  

DJF 

JJA 

  

Sharav cyclone 

Shamal wind 

Activation rainfall   
DAOD  ascent 

Maximum trend during 10-year sub-periods (2001-2010, 
2002-2011, etc) confirms the substantial increase in Middle 
Eastern dust concentration, mainly due to local sources. 
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In response to precipitation and vegetation, dust activation and 
DAOD increased during 2001-2012 but recovered afterwards 

Dust activation 
 (% yr-1) +: DAOD increase  

•  In summary, the MISR CMVP approach provides an encouraging and independent complement 
for the aerosol loading-based or dust-tracking approaches to identify dust source regions. 

•  Future studies are encouraged that combine different dust source identification approaches to 
generate a more accurate dust source map, which will improve dust and climate modeling. 
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Introduction

Results and Future Work

Methodology

• The upcoming NASA-ISRO SAR (NISAR) mission will provide dense temporal 
sampling of high resolution L-, S-band SAR imagery. 

• Data will improve estimates of above ground biomass and global carbon stocks 
for carbon cycle models [1].

• Rapid sampling (12-day repeat pass) will allow for improved monitoring of 
above ground biomass, wetland inundation, and agricultural changes.

• L-band HV backscatter is useful for monitoring forest disturbances without 
atmospheric interference. The NISAR science requirement is to detect 80% of 
regions with at least 50% of forest loss [1].

• Dense temporal sampling permits differentiation between temporary seasonal 
changes and enduring forest disturbances.

• According to NISAR’s Algorithmic Theoretical Basis Document (ATBD) [1], 
forest disturbance is measured using changes to average backscatter within 
square regions, though these square regions need not respect natural image 
boundaries.

Objective

• Introduce algorithm to process multiple spatial and temporal scales and identify 
enduring changes in L-band SAR imagery. Utilize powerful computer vision tool 
known as superpixels.

• Demonstrate methodology using open source python tools [2, 3].
• Compare new methodology to the existing change detection proposed in ATBD 

using ALOS-1 L-band images.

Superpixels

Superpixels are contiguous 
image segments; we use the 
method from [4]. We use 
superpixels to reduce speckle 
noise and track regions with 
similar HV backscatter.

1. Select focal image to analyze within co-
registered stack.

2. Select window of older and more recent 
states to compare to focal image.

3. Form difference stack using the images 
within the window.

4. Extract superpixels from the difference 
stack.

5. Aggregate backscatter within a 
superpixel using the mean or median 
and apply to each difference image in 
stack.

6. Threshold aggregated backscatter 
differences to identify change.

7. Create change map:
• Including change that persisted in 

more recent states
• Exclude any change that occurred 

in any previous state

• Tested methodology on ALOS-1 L-band 
imagery over Laurentides Wildlife Reserve 
in Quebec, Canada (Left panel of Figure), 
which is a Cal/Val site [1]. 
§ Hand labeled data on image stack as 

proxy to true forest loss. 
§ Our proposed method out performed 

pixelwise thresholding and averaging 
in square regions (see center panel of 
Figure). 

§ We compared performance using the 
F1 score (harmonic mean of producer 
and user accuracies).

• Created python package with numerous 
Jupyter notebooks to explain usage.

• Plan to implement product to quantify 
uncertainty and improve data validation.

Figure (Left) Study area in Laurentides Wildlife Reserve. (Center) F1 scores for various thresholds and change detection methods. (Right) Confusion matrix 
of change map obtained from our methodology using threshold with highest F1 Score.
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Polarimetric GNSS Radio Occultations (GNSS PRO)

Reception: linear 
H and V

Emission: circular 
RHCP

Polarimetric GNSS RO will provide, for the first time, joint products of vertical
thermodynamic profiles and vertical precipitation information.
Signals emitted by GNSS satellites are collected on a Low Earth Orbiter in occulting
geometry. The signals, as they penetrate into the lower layers of the atmosphere, bent. The
bending can be inferred from precise phase delay measurements, and associated to vertical
gradients of the Earth’s atmosphere refractivity. Temperature, Pressure and Water Vapor
are finally obtained from the vertical refractivity profiles.
Falling heavy precipitation raindrops become asymmetric, inducing a differential phase
delay between the linear orthogonal components of propagating electromagnetic waves.
Precipitation information is obtained from the along-ray integrated phase delay between
the Horizontal and Vertical components of the propagating electromagnetic GNSS signal.

RO observations vs model (re) analyses
COSMIC standard RO observations co-located with analyses
and re-analyses (ERA-Interim, ECMWF High Resolution and
NCEP GFS) are used to assess the bias between RO
refractivity and that of analyses, in the free troposphere, when
heavy precipitation is present. Precip data from GPM IMERG
products (0.1∘ x 0.1∘; 30 min; 1D).
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This difference is shown to be correlated with high specific
humidity rather than with precipitation scattering, therefore
indicating the issues of models/analyses treating free
tropospheric humidity, specially within heavy precipitation.

Vertical precipitation characterization using existing standard RO observations

Padullés et al. 2018, ACP Discussions, 10.5194/acp-2018-66; Cardellach et al. 2017, Quarterly Journal of the Royal Meteorological Society,
10.1002/qj.3161; Schiro et al. 2016, Journal of the Atmospheric Sciences, 10.1175/JAS-D-16-0119.1; Holloway & Neelin, 2009, Journal of the
Atmospheric Sciences, 10.1175/2008JAS2806.1; Neelin et al. 2009, Journal of the Atmospheric Sciences, 10.1175/2009JAS2962.1

Height = 5 km

While PRO obs. are not yet available,
we use coincident COSMIC / Metop A
& B standard RO products with GPM
IMERG precipitation data to build
precipitation transition statistics.
Moisture positioned above boundary
layer (free troposphere, 850-200 mb)
has been shown to play an important
role in the onset of heavy
precipitation, and here it is
confirmed for different regions
using actual RO observations. It is
also shown how the partial (free
tropospheric) integrated column
water vapor critical value, at which
precipitation exhibit a sharp pickup,
depends on the temperature.

• RO observations are shown to be a powerful tool in the study
of the vertical thermodynamic structure of precipitation,
providing precipitation transition statistics comparable to those
already obtained with radiosondes, and being able to spatially
expand these observable relationships.

• With Polarimetric RO we will be able to indicate the presence
of precipitation, and to link the vertical thermodynamic profiles
to the along ray (at each vertical level) precipitation contribution.

• Polarimetric RO are being collected for the first time ever on
board the PAZ satellite, and the data processing and analysis
has started successfully.

Conclusions and impact
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Incomplete understanding of the role of water vapor driving heavy precipitation lead to large disparities in the representation of such events among different 
current climate models. In this context, the role of observations is to provide simple and reliable relationships between thermodynamic observable quantities to 

assess model’s performance in representing such processes, reducing uncertainties, and to better understand the thermodynamics underlying heavy precipitation.

Initial Polarimetric Radio Occultation data assessment
The Radio Occultation and Heavy Precipitation onboard PAZ satellite experiment (ROHP-PAZ) is
collecting ROs at two polarizations (H, V) for the first time ever. PAZ was launched on
February 22, 2018, and the first PRO observations were received in May. An example of the SNR
at two polarizations for one of the first PRO observations ever is shown below (left).
An important part of the cal/val phase of the experiment is to characterize the antenna pattern,
modified from the original by a metallic structure included due to unexpected launcher changes.
Antenna pattern for H and V polarizations are shown below (right). Only V-pol is enabled to
sound the ionosphere (lower elevation). Zero azimuth corresponds to anti-velocity.

Antenna pattern characterization
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