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4. Interpretation: diffuse heating reflects underground 𝐇𝟐𝐎 condensation 

Previous studies in fumarolic fields revealed that heat is released diffusively through the soil. Diffuse

heating is a major source of energy, and has been found to dominate over the elastic energy released

during seismic and deformation crises [4].

Research Questions:

a

b

c

Does diffuse heating occur over large areas of the volcanic edifices? 

Are volcanic eruptions preceded by an enhancement of diffuse heating?

How is diffuse heating related to the pressure of magma reservoirs?

Case Studies:

Ontake (Japan)

Ruapehu (New Zealand)

Domuyo (Argentina)

Calbuco (Chile)

Redoubt (USA)

a
We analyzed 16.5 years of radiance data (from ~26,000 to ~47,000 scenes per volcano;

> 25 TB) from the MODIS instruments aboard the Terra and Aqua satellites.

b
After discarding cloudy scenes, we calculated the contrast in median brightness

temperature between the volcanoes and their surroundings.

The results are filtered through an efficient noise reduction

technique to extract long-term (~years) trends. This yields

the median anomaly 𝜹𝑻 𝒕 .

c

Permeable flow of magmatic gases (𝐇𝟐𝐎, 𝐂𝐎𝟐, etc.) 
Heat conduction + 

permeable flow of non-
aqueous magmatic
gases (mostly 𝐂𝐎𝟐)

𝑯𝟐𝑶 condensation
level

Diffuse heating of the
surface (+ release of 𝐂𝐎𝟐)

Magmatic-hydrothermal interaction
(𝐇𝟐𝐎 condensation and release of latent heat, 

fluid circulation, chemical reactions)

2

5

3

Magma reservoir

Volatiles exsolution1

Figure 1. Fundamentals of large-scale

(~volcanic edifice size) diffuse heating.

Magmatic gases are transported through

the crust via permeable flow (grey

arrows) and interact with hydrothermal

systems, which fosters H2O condensation

(blue circles) and thus the release of latent

heat (red arrows) and fluid circulation. At

the uppermost levels, latent heat is

transported via conduction, which

increases soil temperature and radiance.
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3. Results: volcanic edifices get warm for years before eruptions

The last

magmatic and gas-

driven eruptions

were preceded by

long-term (~years)

warming of ~0.10-

0.72 ℃ (Fig. 2).

We propose that large-scale diffuse heating reflects the latent heat released during the underground

condensation of volcanogenic H2O (Fig. 1). The rate of heat production is controlled by the supply of

H2O (via permeable flow) to the condensation zone, and thus by the magma reservoir pressure.

Under local thermal equilibrium and steady-state conditions, thermal power increases of 10s of MW

correspond to overpressures of ~0.1 – 2 MPa in magma reservoirs (Fig. 3).

a

b

• Volcanoes get warm years before eruptions due to the large-scale (~volcanic edifice size) diffuse release of heat (Fig. 1). This is the first time that large-scale diffuse heating is detected [1].

• Diffuse heating probably reflects the latent heat released during the underground condensation of volcanogenic water vapor. Volcanic thermal power and subsurface pressure are now linked through a transport model [2].

∆Φ =
2𝜌𝑐𝑔𝜅𝑆𝑀𝐿𝑒𝑣
𝜇𝑅 𝑇𝑚 + 𝑇𝑐

∆𝑃

Figure 3. Link between thermal power change (∆Φ) and reservoir overpressure (∆𝑃). A: Solution of the mass, momentum and energy

equations under local thermal equilibrium and steady-state conditions. B: ∆Φ vs ∆𝑃 for realistic values of the parameters. See Fig. 1.
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∆𝑷, 𝑻𝒎

𝜿, 𝑺, 𝑴, 𝝁, 𝑹
∆𝚽, 𝑳𝒆𝒗, 𝑻𝒄

𝝆𝒄, 𝒈

∆𝚽 : thermal power change at the

condensation level (= at the surface under

steady-state conditions); ∆𝑷 : reservoir

overpressure; 𝝆𝒄: crust density; 𝒈: gravity;

𝜿: permeability; 𝑺: cross-sectional area to

flow; 𝑴: gas molecular weight; 𝑳𝒆𝒗: latent

heat of 𝐻2𝑂 evaporation; 𝝁: gas viscosity;

𝑹: ideal gas constant; 𝑻𝒎, 𝑻𝒄: magma and

condensation temperatures.

∆𝚽

𝜿 = 𝟏𝟎−𝟏𝟓𝐦𝟐

𝜅 = 10−16 m2

𝜅 = 10−17 m2
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• Our findings open new horizons to better constrain the thermal budget of active volcanic systems, explore the coupling between thermal emissions and ground deformation [3], and improve the forecasting of eruptions.

a

Pre-eruptive 

increases of 

thermal power 

of 10s of MW. 

Figure 2. Median anomaly (𝛿𝑇)

time series. A: Ontake. B:

Ruapehu. C: Domuyo. D:

Calbuco. E: Redoubt. The shaded

area is the uncertainty (95%

confidence level); black lines

represent eruptions/explosions.
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Introduction
GOAL: Exploit the large amount of data derived from InSAR satellite missions (e.g., upcoming NISAR).
PROBLEM: Several deformation mechanisms are active at the same time.
SOLUTION: Blind source separation techniques like Independent Component Analysis (ICA). A variational Bayesian
approach (vbICA) is superior with respect to the widely used FastICA algorithm (Figs. 1 and 2). vbICA is a generative model:
it uses a mix of Gaussians to model the sources and minimize the KL-divergence between the approximating and true sources
probability density functions. FastICA is a mapping approach that maximizes the non-Gaussianity of the sources.

Synthetic tests
256�256 = 65536 pixels
Fig. 1: Two Mogi sources (107
epochs)
Fig. 2: Creep + Mogi (76 epochs)
In both cases we add noise of
different origin (atmospheric
stratification, tropospheric
turbulence, orbital errors, random
phase noise).

California: Natural separation of long-term subsidence and seasonal deformation (Figs. 3a-b). They might be due to anelastic
and elastic compaction, respectively. Subsidence persists after the end of the drought (Fig. 3c). We can also isolate unwrapping
errors (Fig. 3d), manifested as pixels with anomalous jumps of the order of half of the radar wavelength.

Fig. 3: a) Long-term subsidence in Central Valley (CV) might indicate anelastic compaction. Magenta triangles: wells location.
b) Seasonal deformation in CV might be related to shallow aquifers and elastic deformation. c) Wells water level (blue) and
arbitrarily rescaled InSAR long-term/seasonal temporal functions (black). d) Isolated jumps probably due to unwrapping errors.

Fig. 2: As Fig. 1, but for creep signal (left
column) and a Mogi source (right
column).

1a)

1c)

1e)

1b)

1d)

1f)

2a)

2c)

2e)

2b)

2d)

2f)

Conclusions: vbICA allows to retrieve useful information from large spatio-
temporal datasets and helps interpret them.

Fig. 1: Line-Of-Sight (LOS) displacement
XLOS = AS. A: normalized temporal
function. S: spatial distribution. Top row:
true sources (Figs. 1a-b). Central/Bottom
row: FastICA/vbICA sources (Figs. 1c-f).

3a) 3c)

offset ~0.5

C-band ~37.5-75 mm wavelength
40 mm�offset ~ ½ wavelength

3d)3b)
Subsidence 
persists!
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Widespread initiation, reactivation, and acceleration of 
landslides in the northern California Coast Ranges due to 

extreme rainfall
Alexander Handwerger (329-A), Eric Fielding (329-A), Mong-Han Huang (U of Maryland), 
Georgina Bennett (U of East Anglia), Cunren Liang (Caltech), and William Schulz (USGS) 

Handwerger, A. L., Fielding, E. J., Huang, M., Bennett, G., Liang, C., and Schulz W. H. (2019). Widespread initiation, reacti-
vation, and acceleration of landslides in the northern California Coast Ranges due to extreme rainfall. 
JGR Earth Surface. 
Swain, D. L., Langenbrunner, B., Neelin, J. D., & Hall, A. (2018). Increasing precipitation volatility in twenty-first-century 
California. Nature Climate Change, 8(5), 427.

4. Conclusions
• Large, deep-seated, slow-moving landslides show size-dependent 
sensitivity to large changes in annual rainfall.

• The extreme wet season of 2017 triggered a widespread, but short-lived 
increase in landslide activity and velocity.

• Based on climate model predictions for the next century in 
California, which include increases in annual precipitation and increases 
in the frequency of dry-to-wet extremes, we hypothesize that there will be 
an overall increase in landslide activity.

1. Introduction
Landslides are a natural hazard that causes billions of dollars in 
damages and claims thousands of lives annually. Climate change, which is 
altering the frequency and magnitude of precipitation worldwide, is 
predicted to have a major impact on landslides.

Main Question: How do landslides respond to drought and 
extreme rainfall?

Objectives: Document the kinematic response of hundreds of 
slow-moving landslides in California during the recent historic drought 
(2012-2016) and the second wettest year on record (2017).
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California Coast Ranges

Rapid shifts from dry-to-wet extremes in 
California, similar to the changes in 
precipitation that occurred between 2015 
and 2017, are predicted to increase by 
25% to 100% during the 21th century 
(Swain et al., 2018) 

UAVSAR

image from https://uavsar.jpl.nasa.gov/

We use radar interferometry (InSAR) and pixel offset tracking 
techniques on a novel dataset from NASA/JPL Uninhabited Aerial 
Vehicle Synthetic Aperture Radar (UAVSAR). The data is processed with 
the JPL/Caltech and Stanford InSAR Scientific Computing 
Environment (ISCE) software package. We construct time series 
inversions with the Generic InSAR Analysis Toolbox (GIAnT) and 
perform a least squares inversion with multiple line-of-sight (LOS) 
measurements to invert for 3-D ground surface displacement.

2. Methods

Airborne Synthetic Aperture Radar

We identify active landslides between April 2016 and February 2018 using 
InSAR velocity maps. Landslides display clear ground deformation 
(high positive or negative LOS velocities). We then use high-resolution 
digital elevation models, Google Earth images, and previously published 
landslide inventories to confirm that the InSAR deformation signals 
correspond to landslides.

Landslide reconnaissance

Digital Elevation ModelInSAR
N2.5 km

-8 -4 0 4 8

LOS velocity (cm/yr) active landslides

Google Earth

3. Results
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We found that 312 landslides were moving due to extreme
rainfall during 2017, compared to 119 during 2016, which was the final year 
of the historic multi-year drought. However, with a return to below average 
rainfall in 2018, only 146 landslides remained in motion.

The increased number of landslides during 2017 was primarily
accommodated by landslides that were smaller than the landslides that 
remained active between 2016 and 2018. Our findings suggest that 
small landslides experience large precipitation-induced pore-water 
pressure swings, which trigger large changes in landslide activity. Large
landslides are less sensitive to changes in seasonal to annual rainfall and 
display more consistent motion from year-to-year.
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Time series analysis for 51 landslides

Landslides that were active during the full study period displayed 
seasonal changes in motion. There was a large increase in displacement 
for each landslide that corresponded to the large increase in precipitation 
during the 2017. The maximum velocity occurred during the wet season of 
2017.
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Background Probabilistic Fault Displacement Hazard Analysis (PFDHA), defines the proba-
bility of distributed faulting with distance from the primary fault strand. So far this has been 
constrained solely from field observations of recent surface ruptures, which suffer from large 
uncertainty and are sparsely measured along ruptures.

Aim The degree of strain localization along surface rupturing earthquakes can vary from dis-
crete single-faults to distributed arrays of fractures that are 100’s of meters wide. Here we at-
tempt to measure this variation of inelastic strain localization using geodetic imaging data 
(optical and radar), to then develop empirical probability models of its occurrence. 

Importance  Distributed inelastic, permanent strain poses a hazard to critical infrastructure 
(e.g., water and gas piplines, roads and bridges) and affects the mechanical properties of 
rock (e.g., permeability), and causes attenuation of seismic radiation.

Cochran et al. (2009) 1 km

0 km

Milliner et al. (2016)
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) Left: Surface rupture can vary 
from discrete single faults to 
arrays of fracture. Inelastic 
strain can be measured by 
pixel tracking of images that 
constrains surface motion. 

Localized rupture

Distributed rupture

Measuring Surface Displacement
Data: We use air photos, satellite optical imagery (Worldview and Quickbird, 50 cm resolu-
tion), and ALOS-2 descending and ascending SAR pairs in strip-map mode taken before and 
after earthquakes to measure near-field surface deformation. 

Correlation method: We use correlation of radar and optical images before and after earth-
quakes to resolve the surface defomation to subpixel precision (bottom right). This provides 
denser measurements of strain that are of lower uncertainty than field data (bottom left).

Thousands of strain 
measurments every 150 
m along-rupture

Uncertainty can be 
quantified (1σ = 10-20 
cm)

Field measurment 
of fault offset

3D surface deformation from in-
verting multi-look ALOS-2 SAR 
offsets (azimuthal and range)

2D surface deformation (hori-
zontal components) con-
strained from image correlation 
of aerial photos
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Current distributed faulting hazard maps.
Setback distances are typically arbitrary (dark 
brown), giving a binary safe-no safe location
and provides no hazard informaiton for structures
already situated nearby faults 

Our proposed product - a probabilistic 
estimate of  distributed strain, constrained 
by geodetic imaging data. 

Sparse measurements (yel-
low dots)

Large or sometimes un-
known uncertainty due to 
subjective nature

Surface Deformation Maps
of Large Magnitude (Mw) earthquakes

Annual rate of return (yr   )
Source: Geologic slip rates Conditional probability of exceedance

Source: This study, strain pro�les

1999 Mw 7.1 Hector Mine 
surface rupture

Conditional probability of rup-
ture occurrence at distance (r) 
Source: This study, strain pro�les

-1

Probability of surface rupture (sr) given the 
earthquake magnitude (m). Source: Empir-
ical scaling relations of past ruptures

Correlation of optical and radar images can be used to measure the full 3D surface deformation, 
providing dense measurements that are of lower uncertainty than current traditional field observa-
tions.
Geodetic data can resolve the attenuation of inelastic strain across faults providing key data to con-
strain probabilistic models for occurrence and exceedance of distributed rupture
The data collected and probability models generated here can be used to better mitigate for the 
hazard of distributed rupture by producing more accurate probability estimates. 

From the deformation maps 
we extract fault-parallel dis-
placement (A,B) and shear 
strain (C,D) profiles, which 
vary in amplitude and atten-
uation across the ruptures. 
Strain (bottom) is estimated 
as the gradient of displace-
ment (top).

We find the observed strain 
distribution(blue) is inconsis-
tent with elastic strain pre-
dicted by a screw dislocai-
ton (red), and is instead 
likely reflecting inelastic fail-
ure of the surface (green)
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1. Introduction

• Event: Mw 7.2 El Mayor Cucapah earthquake
• Date of occurrence: 4th April 2010
• Location: Northeastern Baja California
• Kinematics: Right-lateral strike slip and normal

faulting (120km NW-SE bilateral rupture)

Left: Analytical solution from joint inversions of
GPS, InSAR and subpixel offset data from Huang
et al., 2016 suggests the presence of 9 fault planes
with relatively shallow slip, (peak slip 6m).

Is this an optimal solution and is it valid when 
additional complexity is considered? 

2. Modeling

Objective: Use numerical modeling to check the goodness of the analytical slip solution vs
recorded data and further optimize it considering also additional complexity (topography and
material heterogeneities).

3. Results

Residual [m]

Data [m] Model [m] Residual [m]

Range

A
zi

m
ut

h

Data [m] Model [m]

A
zim

uth

• Optimized solution fixes GPS near-field displacement vectors and fits well far-field GPS, InSAR and subpixel off. data.
• Inclusion of heterogeneities increases the slip at depth (about 1-2 m) because of higher rigidity of the medium;
• Inclusion of topology gives negligible contribution (<2%) because most of near-field GPS stations are in a valley.

Geometry specs
• Outer Domain 550x550x100km
• Inner Domain 100x100x20km
• Topography: SRTM 90m

Boundary conditions
• Top surfaces: Free
• Bottom surface: Fixed
• Outer boundaries: Roller

N-S component

E-W component

v Huang et al., 2016. J.Geophys.Res.Solid Earth, 121;

UNAVCO network far-field GPS stations
Vertical component (model vs data) [mm]

Motivation: Analytical inversions of geodetic
data assume flat homogeneous or layered half-
space to provide the slip on fault segments. Are
analytical assumptions sufficient to describe
complex tectonic events?

Analytical solution vs GPS data
Before Numerical Optimization

GPS displacement vectors from optimized solution match very well the data 

Slip before optimization (analytical) Slip after optimization (numerical-homogeneous)

• Optimized solution increases but spatially reduces the analytical slip to fit the observations;
• Moment magnitude obtained from optimized solution is closer to the recorded value (Mw 7.2). 

Mw=7.26 Mw=7.24

Range

InSAR data comparison (ALOS-PALSAR and ENVISAT)

GPS data comparison at far-field UNAVCO stations (horizontal and vertical compoenents) 

Subpixel offset comparison (SPOT5 +SAR)

Main outcomes

Gonzalez et al., 2014.

Data Model Residual

Data Model Residual

[m]

[m]

Input: Coseismic GPS data Least-squared type cost 
function 

Conclusions: Our numerical model suggests that El Mayor Cucapah event may have been triggered by much
higher slip than expected. Our results provide new hints to better understand the dynamics of such a complex
tectonic event and can be of help for future seismic hazard estimation.

References: 

3D finite element model (performed with COMSOL Multiphysics). Analytical fault geometry is embedded into
two computational domains to constraint the mesh. Materials configuration include homogeneous, layered
(PREM) and heterogeneous case (from SCEC CVM-H).

v Gonzalez et al., 2014. J.Geophys.Res.Solid Earth, 119.

Horizontal component (model vs data) [mm]

Analytical solution vs GPS data
After Numerical Optimization

Does the optimized slip provide good fit on other set of data when used in a forward model?

Optimization

Example of vertical 
and lateral 

heterogeneities 
(Young’s modulus)

SCEC CVM-HTopography

Near-field GPS coseismic displacement from analytical solution underestimate recorded data

https://scec.usc.edu/scecpedia/CVM-H

Heterogeneous Model Parameters

Depth(Km) Density(Kg/m3) E(GPa) ν

0-100 1930-3400 2.5 - 180 0.16-
0.45

http://www.nasa.gov/
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Closing magmatic conduits: constraints from geodetic 
observations and dynamical models

Alberto Roman (329A-Affiliate)
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1. Introduction

2. Data
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3. Model
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Volcanic activity forecasting  is moving  to an approach based on 
deterministic physical models, which allow to make quantitative predictions on 
the evolution of the system. As magma moves in the crust it deforms the 
encasing rocks and the Earth surface, making geodetic observations one of the 
most valuable tools for volcano montioring. Physical models must thus couple 
the dynamics of magma transport with the mechanics of rocks deformation in 
order to allow for accurate, consistent predictions.

Problem: The processes associated with large eruptions are not accounted by 
avalaible models, making our understanding of such events limited.
The 2018 Kilauea eruption provides a unique case study. It lasted 3 months 
and produced approximately one cubic kilometer of lavas, becoming the largest 
eruption in the last 200 years. Kilauea is the best instrumented volcano in the 
world and the eruption has been monitored by ALOS-2, SENTINEL-1 and 
GLISTIN-A missions, which provide a high-quality data-set.

Objective: our goal is to combine ground and space-based geodetic 
observations with a new physical model to understand the dynamics of the 
Kilauea 2018 eruption. The model is used to constrain the main properties of 
the Kilauea plumbing system, but can be easily adapted to other large, caldera-
forming eruptions.
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4. Conclusions

Time-series Parameters estimation

1) Large volcanic eruptions enter in a particular regime which is dominated 
by caldera collapse

2) Caldera collapse is characterized by oscillatory (stick-slip) behavior with 
well defined periods

3) Dynamical modeling shows that the period of the stick-slip motion is 
controlled by the mechanical and geometrical parameters of the volcanic 
plumbing system

4) For the 2018 Kilauea eruption we estimate  a chamber volume of 2 km3 
and a conduit radius of about 3 m

Kilauea 
2018
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Sea-level observations are contaminated by local 
vertical land motion, and GPS records are rather short

• Tide-gauge data are used for many oceanographic, 
geophysical purposes and sea-level reconstructions, but 
they are affected by land motion. 

• Short (~10 years) GPS records are commonly used to 
correct tide-gauge data (Multi-decadal records). 

• Can we just use the short GPS record to correct the long 
tide-gauge, or can we do a better job?

• What we should do: correct for as much processes that 
make this extrapolation inaccurate.

Contemporary mass redistribution causes vertical 
land motion. Can we use GRACE to measure and 

remove this process?

• Global water redistribution causes deformation of the 
surface. We can use GRACE to measure this redistribution 
and compute the resulting deformation.

• Over the GRACE era (2002 – 2017), mass redistribution 
caused large uplift signals, mostly due to ice mass loss.

• How constant is this this rate with time? The below figure 
shows the solid-earth deformation rates over the first and 
second half of the GRACE time span.

• The differences are substantial. Given that 8 years is a 
typical GPS record length, extrapolating an 8-year rate 
could lead to significant biases.

Which processes are responsible for this 
deformation?

• The figure below shows the total land mass change per 
component, as well as the resulting deformation

• The trends are mostly due to glaciers and ice sheets, but 
decadal variability is dominated by terrestrial water storage 
(TWS)

• The ongoing ice mass loss is not representative for 
deformation during the centennial tide-gauge record

• Decadal variability due to TWS changes even affects rates 
over the GRACE period

Uncertainty and the role of Glacial Isostatic 
Adjustment

• Glacial Isostatic (GIA) affects both GRACE observations 
and causes vertical land motion, but its contribution is 
uncertain.

• We use a large ensemble of GIA models to estimate the 
mean corrections, and to derive robust uncertainties

Can we avoid the bias due to elastic deformation 
when extrapolating GPS records?

• We can separate the observed VLM into GIA, elastic 
deformation, and all other sources:

VLMobserved = VLMGIA + VLMelastic + VLMresidual

• We can compute the linear trend in VLMresidual instead of 
VLMobserved

• This avoids the extrapolation bias due to elastic deformation

• We compute trends from GPS records in the Nevada 
Geodetic Laboratory database using the MIDAS trend 
estimator.

• Errors quantified using the Monte-Carlo approach

• Deformation from contemporary mass redistribution 
explains substantial fraction of observed trends in South 
America and parts of Asia.

This process affects estimates of GMSL changes

• An ongoing discussion in the sea-level community is on 
why long tide-gauge records are not in agreement with 
global sea-level reconstructions.

• Correcting tide gauges for residual VLM improves the 
agreement and reduces the inter-station spread

• We now obtain a mean trend of 1.3 mm/yr, with a spread of 
0.4 mm/yr of these long records, which is now in 
agreement with recent sea-level reconstructions, which 
give a 20th-century rate of about 1.2 mm/yr. 
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Take-home messages

1. Elastic deformation causes substantial vertical 
land motion

2. Extrapolating GPS records can thus lead to errors

3. We have a data set with corrected VLM rates

4. With these updated rates, we can reconcile long 
tide-gauge observations and 20th-century sea-
level reconstructions
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Conclusion
• Droughts and high evapotranspiration rates (e.g., caused by high temperatures) can pose a

significant threat on irrigation demand in irrigated regions.

• This study evaluated multiple drought indicators for assessing the effects of drought on irrigation
demand. The drought indicator of soil moisture and relative humidity has the best relationship with
irrigation water use

• We introduced a copula-based methodology to generate probability distribution functions of
irrigation water demand given various drought condition

Datasets

• GLDAS (Global Land Data Assimilation System) Soil Moisture    0.25 °

• MERRA (Modern-Era Retrospective analysis for Research and Applications) Relative 
Humidity and Temperature 0.5° * 0.625°

• Global Precipitation Climatology Project (GPCP) Precipitation 0.5 °

• Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010    1 km

• Annual Texas Irrigation Water Use 1984-2015

• Re-gridded Spatial Resolution: 0.25 degree

• Temporal Resolution of hydrologic data: Monthly

• Data Length: 1984-2015

!"# = %1 ×exp
+, ×-./01

+23-./01
− %1 ×exp (

+, ×-6./01

+23-6./01
) , where %1 =0.611 kPa, %2=17.5, %3=

240.978�c, :;<=>?: dew point temperature�c, :<=>?: air temperature�c

Methodology

(a) (b)

Results

• Table 1 shows the correlation between annual irrigation water use and mean of June-September
drought indicators. As seen the drought indicator of combination of soil moisture and relative
humidity result in highest correlation of -0.56

• In top panel of figure 2, we can see the time-series of annual irrigation water use in the state of
Texas during the 1984-2015 time period. In the bottom panel, we can see the time series of
drought indicator of SM and RH for the same time series. As shown, there is a clear relationship
between water use and drought condition. The lower the drought indicator (hence higher more
intense drought condition), the higher the water use.

• Figure 2 shows the probability distribution functions of irrigation water demand given a dry
(DI=-2) and a wet (DI=2) condition. The hatched area shows the probability of irrigation demand
above107 acre feet of water.

The Empirical Gringorton probability:

Rank of data  from the smallest
Sample size

Standardized normal distribution function, 

@ AB =
C − 0.44

G + 12

C

G

SI = JKL(@ AB )

J

A Data vector

Standardized IndexMI

For SM, VPD and RH, and P

Number of occurrences of the pair AB, OB for
AB ≤ AQ RG; OB ≤ OQ

Sample size

@S AQ, OQ =
TQ − 0.44

G + 12

TQ

G

For: (P, SM),  (RH,SM),  (VPD, SM)

U@(A1│A2 = DI) = %(A1, A2). @(A1

A1: IZZC[R\C]G #^TRG;, A2: #Z]_[ℎ\ IG;C%R\]Z

% A1, A2 : Copula of Irrigation
Demand and Drought Indicator

@(A1): PDF of Irrigation Demand

@(A1│A2): Conditional Probability of Irrigation Demand 
Given x2=SI

Variable Correlation 

Soil Moisture (SM) -0.55

Relative Humidity (RH) -0.5

Vapor Pressure Deficit (VPD) 0.49

Precipitation (P) -0.4

(SM,VPD) -0.51

(SM,RH) -0.56

(P,SM) -0.54

Dry 
Condition

Wet 
Condition

" IZZC[R\C]G > (1 ∗ 10rR% − s\ ) #I = −2) " IZZC[R\C]G > (1 ∗ 10rR% − s\) #I = 2)

Table 1: Correlation of Annual Water Use with Average Summer Drought Indicator

Figure 1: Time series of Annual Irrigation Water Use and Drought Condition

Figure 2: PDF of irrigation water demand given a dry (DI=-2) and a wet (DI=2) condition

Introduction
• Droughts can pose a significant threat on irrigation demand in irrigated regions

• The irrigation water demand is fundamental for agricultural water management given that
agricultural irrigation is the second largest user of water in the United States

• Several studies have been developed for linking irrigation water demand to environmental
conditions. These models are generally either conceptual or statistical . Generally, statistical
methods have much fewer data requirements and have shown to be an effective tool for
assessing the effects of droughts irrigation water demand

• However, these models are either deterministic or offer probabilistic results via a single
irrigation demand distribution function that incorporates all the possible climate conditions
experienced during a specific month or growing season

• In contrast, policy makers might prefer a model that produces irrigation water demand
distributions based on a specific environmental condition (e.g., temperature or water vapor
amount) that is observed (or expected) for a given month or growing season

• Here, we introduce a new model capable of producing such irrigation demand distributions
which relies on a copula-based, multivariate statistical technique and the concept of
conditional probability

http://www.nasa.gov/
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Motivating Questions
1. Do spaceborne radars at different frequencies retrieve 

similar distributions of rainfall in middle latitudes?
2. If not, how do they vary by environmental regime?

Background
• Water is a critical resource for society and nature.
• Rainfall couples Earth’s energy budget and atmospheric circulations.
• Models poorly represent rainfall, so we need better observations of 

rainfall to improve future climate projections (Stephens et al. 2010).
• NASA’s global spaceborne precipitation sensing system consists of 

many passive sensors trained on Ku-band radar observations.
• It has been documented in the tropics that, while these radars can 

sense heavy precipitation, they cannot sense lighter precipitation 
because of their low frequency and large footprint (Berg et al. 2010).

• Here we extend that prior to work to middle latitudes in the context of 
our two motivating questions.

Methods
• Rainfall data is taken from the GPM Ku-band precipitation radar.
• CloudSat’s W-band radar, sensitive to clouds and light precipitation, 

provides rainfall intensity and occurrence data for comparison.
• Environmental data is available from Remote Sensing Systems 

using microwave imagers nearly collocated with each radar.

Global Retrieved Rainfall Distributions

• GPM’s Ku radar retrieves a higher quantity of rain falling globally but 
not in the midlatitudes.

• CloudSat retrieves rain occurring more often than GPM’s Ku radar in 
the midlatitudes and nearly globally.

Regime Dependence

• Environmental regime allows us to examine similar types of rainfall 
despite different radar orbits.

• Water vapor provides information on rain location around fronts, 
while cloud liquid water informs about the density of clouds.

• CloudSat sees rain occurring more often in nearly all regimes—
and especially in smaller cloud liquid water paths (0.31-0.43 kg m-2).

• CloudSat retrieves higher rainfall amounts in all regimes but high 
cloud water/low water vapor and low cloud water/high water vapor.

Why The Disparity in Rainfall Amounts?

• In this example regime, differences exist in the rain rate distribution.
• Even at moderate rainfall rates (~1 mm hr-1) where both sensors 

should ideally retrieve the same distribution, the sensors differ.
• Attempts to reconcile the two sensors—either by raising GPM 

precipitation occurrence with CloudSat or accounting for CloudSat 
saturation with GPM—do not yield an improvement.

Discussion
• CloudSat observes precipitation falling more often and of an overall 

larger amount than GPM’s Ku radar in the midlatitudes.
• This mostly occurs in moderate environmental regimes.
• Some differences in the two radars stem from instrument sensitivity 

since they observe rain occurrence differently.
• But differences in the magnitude of rainfall likely arise because 

these satellites use different radars at different frequencies with 
different algorithms that have different microphysical assumptions.

• This motivates the need for a combined low/high frequency radar 
platform to leverage strengths of each in a unified algorithm.

References
1. Stephens et al. (2010) JGR, doi:10.1029/2010JD014532. 
2. Berg et al. (2010) JAMC, doi:10.1175/2009JAMC2330.1.
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INTRODUCTION OBJECTIVES

MODELS & METHODS

RESULTS CONCLUSIONS

• Hydrologic outputs from global Land Surface Models (LSMs) are widely 

available and represent valuable alternatives for supporting water 

management in ungauged river basins where observations are scarce.

• Outputs from these models can help to prevent large-scale disasters in 

transboundary river basins in South and Southeast Asia where data sharing is 

limited.

• The wide range of existing model outputs makes the choice of dataset 

challenging in the absence of detailed model validation in that region.

• Identify optimal global LSMs for estimating river flow in the Ganges-

Brahmaputra-Meghna (GBM) and the Mekong river basin located in South 

and Southeast Asia, respectively.

• A secondary goal is to identify the most sensitive factors affecting the 

accuracy of the simulated flow among a) the choice of the LSM, b) 

precipitation input, c) spatio-temporal resolution of the models, and d) 

routing model parameters. 

• ECMWF’s ERA-

Interim/Land outperforms 

all other LSMs.

• Selection of LSM and 

precipitation input are the 

most sensitive factors 

affecting the river flow.

• Routing model parameters 

are not much sensitive as 

the above two factors, but 

“k” can be used to fine-tune 

the hydrograph timing.

• The findings are expected to 

help water managers in the 

region while also supporting 

further development of 

models.
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Different LSMs Different Precipitations

Different Resolutions Different Parameters

Accuracy of  Simulated Flow:
Correlation Coefficient, Nash–Sutcliffe 

Efficiency, Root Mean Square Error, Bias, 

Standard Error, Lagged Cross-Correlation
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MODELS

METHODS

Input Precipitation:

GLDAS, GLDASv2.0, 

GLDASv2.1, ECMWF-

ERA-interim

Routing Model Parameters:

Flow Wave Propagation Time (k),

Muskingum Dimensionless 

Diffusion Coefficient (x)

LSM resolution: 3-hour, 1-day & 0.25°, 1°
Routing Model Resolution: ~5 km, ~20 km 

(average reach length)

LSMs: CLM, Noah, 

Mosaic, VIC, ECMWF-

ERA-Interim/Land
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and Mekong

River Routing Model*
*RAPID: Routing Application for

Parallel computatIon of Discharge

(David et al., 2011)
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RESULTS

Figure 1: Flow accuracy as a 

function of different LSMs

ECMWF is superior in most cases

Figure 2: Flow accuracy 

as a function of different 

precipitation inputs

Figure 3: Flow accuracy as a 

function of different

(A) model resolutions,

(B) routing model parameters

Resolutions and Parameters 

are less sensitive factors

Parameter, k can be 

used to fine-tune the 

hydrograph timing

Figure 4: Lag time corresponding 

to the maximum cross-correlation 

as a function of different

(A) routing model parameters,

(B) LSMs and precipitation inputs

Timing of ECMWF is better
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1. Does combining ground-based and space-based 
atmospheric CO2 constraints within a flux inversion 
framework improve the agreement between 
posterior CO2 estimates and aircraft CO2 
measurements?

2. How precisely can the seasonal cycle of net 
ecosystem exchange (NEE) be estimate on regional 
scales in northern regions from atmospheric CO2 
measurements?

Figure 1. Number of measurements per day for GOSAT. Each subplot shows the number density of measurements for a given meteorological season

Figure 2. Locations of ObsPack (blue circles), ZOTTO (cyan circle), JR-STATION 
(magenta circles), and TCCON (green triangles) sites. The number of observations 
from space-based observing systems (GOSAT+OCO2) per year are also shown.

Estimates of CO2 fluxes at Earth’s surface can be obtained from measurements of atmospheric CO2 
using flux inversion methods. The recent launch of space-based missions that measure column-
averaged dry-air mole fractions of CO2 (XCO2) has greatly increased the number of atmospheric 
CO2 measurements that can be used to estimate CO2 fluxes. However, at high latitudes the 
observational coverage of the space-based XCO2 measurements is highly seasonal (Fig. 1).

Introduction

Posterior Seasonal Cycle

Acknowledgements

Key Results
• The seasonal cycle of posterior NEE is recovered with high precision and generally falls within the model spread.
• The GOSAT+surface inversion is similar to the GOSAT-only inversion during the summer
• The GOSAT+surface inversion is similar to the surface-data-only inversion during the winter
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with NASA. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. We 
are also thankful for support from NASA OCO2/OCO3 science team program.

We examine the seasonal cycle obtained by the flux inversions over three regions (Fig. 4). We performed three inversion using 
different prior fluxes and uncertainties, giving a range of posterior fluxes (giving an estimate of precision).

Figure 5. (a) Map showing there regions, (yellow) Canada+Alaska, (green) Europe, and (salmon) North Asia. (b) Posterior seasonal cycles of 14-day NEE fluxes for 
(black) the GOSAT-only inversions (magenta), surface-data-only inversions (yellow), and GOSAT+surface data inversions. The dashed lines show the seasonal cycles 
of the prior NEE fluxes for (green) SiB3, (blue) CASA, (red) SMAP L4C, and (orange) FLUXCOM.

(a)

(b)

Conclusions
• Assimilating multiple atmospheric CO2 datasets within a single flux inversion gives strong agreement between posterior atmospheric CO2 and aircraft CO2 measurements. 
• The posterior NEE seasonal cycle recovered from atmospheric CO2 flux inversions is recovered with high precision, and is not very sensitive to prior NEE.
• The seasonal cycle of posterior NEE generally falls within the model spread, but does show some systematic differences, such as, a more rapid transition to drawdown during the spring.
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Luckily, there are a number of ground-based sites measuring atmospheric CO2 at high northern 
latitudes (Fig. 2). In this study, we examine the feasibility of combining ground-based and space-based 
measurements of atmospheric CO2 within a single flux inversion framework. Specifically, we ask:

Figure 3. (a) Location of aircraft CO2 measurements used for evaluation. (b) (top) Scatter plots of posterior inversion CO2 and aircraft measurements over 2010-2015 
and (bottom) the monthly mean data-model mismatch as a function of month of year

Evaluation of the flux inversions

We perform a series of flux inversions with GHGF-Flux. All flux inversions are performed using 
4-dimensional variational (4-DVar) assimilation to optimize 14-day NEE and ocean fluxes over 
2010-2015. For all inversions, we prescribe ODIAC fossil fuel emissions, CASA-GFED4-FUEL 
biofuel emissions, GFED4 biomass burning emissions, and ECCO-Darwin prior ocean fluxes. 
The flux inversions differ in the prior 14-day NEE fluxes and data-sets assimilated.

Assimilated data:
• ObsPack GLOBALVIEW v4.1 (CGADIP, 2018). This package incorporates data from many observing 

sites around the world and is specifically prepared for use in data assimilation studies. 
• Japan–Russia Siberian Tall Tower Inland Observation Network (JR–STATION). This is a network of 

nine towers, these measurements are provided as hourly means. 
• Greenhouse Gases Observing Satellite (GOSAT). We use version 7.3 of the NASA Atmospheric CO2 

Observations from Space (ACOS) GOSAT measurements in this analysis. We assimilate all high gain 
(H-Gain) nadir measurements that pass the quality flag requirement.

Data and Methods

Canada + Alaska Europe North Asia

Figure 4. zonal mean mismatch between GOSAT measurements and flux inversion posterior 
CO2 fields as a function of latitude and time. Zonal means with less that 50 GOSAT 
measurements are removed.

(a)

(b)

Canada + Alaska Europe North Asia
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It is challenging to evaluate the accuracy of posterior CO2 fluxes obtained by flux inversions. 
Here, we evaluate the simulated posterior atmospheric CO2 fields against independent 
measurements of atmospheric CO2 measurements from aircraft campaigns. In general, closer 
agreement between posterior CO2 and aircraft measurements suggests more accurate fluxes.

Figure 3 compares aircraft measurements over Japan to simulated CO2 
for the prior fluxes, surface-data-only inversion, GOSAT-only inversion, 
and GOSAT+surface-data inversion. We find that (1) the surface-data
inversion has the smallest mean bias (2) the GOSAT inversion best
recovers the seasonal cycle and (3) the GOSAT+surface inversion well 
captures the seasonal cycle with a reduced mean bias relative to the 
GOSAT flux inversion.

To further examine the differences between the flux inversions, we can 
examine the zonal differences between the posterior fluxes and GOSAT 
measurements as a function of latitudes and time (Fig. 4). We find that 
all inversions improve agreement with GOSAT relative to the prior.

(a)

(b)

http://www.nasa.gov/


Scientific questions:
• How do changes in forest structure caused by degradation impact 

the energy, water, and carbon cycles across the Amazon?
• Does degradation make Amazon forests more susceptible to fires?

Amazon forest degradation impacts on energy, water, and carbon cycles
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Introduction Average impacts of forest degradation

Approach

Figure 1. (a) Airborne-lidar derived canopy height across the Amazon in Brazil and French Guiana, 
showing regional heterogeneity (highest in S and E, where most of deforestation and degradation 
occurs. (b) Typical changes in forest structure and function in tropical forests[1].

Initialization and model assessment

Interannual variability & flammability risk

Conclusions and future directions

Figure 2. Overview of the integrated lidar and ED-2 model framework, used to understand the impact 
of tropical forest degradation on biophysical and biogeochemical cycles in the Amazon.

Figure 3. (a–c) Assessment of lidar initialization using cross-
validation. (d–f) Evaluation of simulated evapotranspiration 
across the Amazon, using towers as references.

Initialization assessment (Fig. 3): 
‣ 1000 bootstrap sampling replicates 
(leave region out).
‣Reasonable structural change due 
to degradation across regions.
‣Negative bias in understory of 
dense canopies.

Model evaluation (Fig. 3): 
‣Good agreement with tower’s ET 
across rainfall gradient
‣ Largest biases at the driest sites 
and season transitions.

Figure 4. Long-term (1980–2016) monthly averages of (a-c) 
evapotranspiration and (d-f) daytime ground temperature across 
the Amazon region and across degradation gradients.

Water flux (Fig. 4). 
‣ Intact, light degradation: 
Dry-season increase
‣Severe degradation: dry-
season reduction.

Ground Temp. (Fig. 4): 
‣Dry-season warming in 
degraded forests.
‣Warming above 4°C in 
drier sites.

Figure 5. Relative differences in (a) GPP, (b) soil moisture, and (c) 
flammability in degraded forests (PRG).  (d) Average flammability 
as a functions of biomass (proxy for forest structure).

Degradation impacts –
 Interannual variability:
‣Typical years: GPP↓, 
SWC30cm↓.
‣Extreme droughts: 
degradation effects less 
significant.

Fire risk (Fig. 5d):
‣ Wet (GYF): low fire risk
‣ Intermediate (BTE, 

PRG): increased fire risk 
due to severe 
degradation.

‣ Dry (FZN, TAN): 
recurrent flammability 
even at low degradation.

Degradation effects on typical years:
‣Wet season: few differences
‣Dry season: Tground↑, H↑, ET↓, GPP↓
Degradation impacts on flammability: 
‣Severe droughts: all forests are flammable; 
‣Moderate droughts: flammability in severely degraded forests only.
Future directions: integrate ECOSTRESS and lidar data at regionally 
to quantify the role of forest degradation on water and energy cycles
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Lidar and forest inventory data from Brazil were acquired by the Sustainable Landscapes project supported by the Brazilian Agricultural Research Corporation (Embrapa), 
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Vincent for sharing tower and additonal lidar and inventory data sets, and Joshua Fisher, Paul Moorcroft, Fabian Schneider, and Xiangtao Xu for discussions. 

Figure 6. Impact of deforestation and degradation near midday on dry-season ET and 
LST in Southern Amazonia, from ECOSTRESS. Ring patterns are burned areas.
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Input data

Forest Inventory
•200 ha (817 plots)
•Overlap with lidar
•Geo-referenced (ε < 1m)
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Airborne lidar
• 13600 ha
• Return density ≥ 10 m−2

• Degraded + Intact forest

Landsat 5, 7, 8
• 1984–2017
• NBR and NDVI time series
• Disturbance delineation

Initial conditions
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Output

Meteorological forcing
• MSWEP-2.2[2] (Rainfall)
• MERRA-2[3] (Pressure, Temperature, Humidity, 

Wind, Radiation)
• Hourly data,1980–2016
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• Process-based terrestrial biosphere model
• Detailed biophysics and biogeochemistry
• Horizontal+vertical heterogeneity of canopies
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• Sensible heat flux and evapotranspiration
• Soil moisture and temperature
• Canopy radiation (shortwave and longwave)
• Gross Primary Productivity and Respiration
• Flammability
• Growth, mortality, and reproduction (not used here)
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Global terrestrial ecosystem Gross Primary Productivity (GPP) constitutes the 
largest land-atmosphere annual carbon flux and the primary mechanism of 
photosynthetic fixation of atmospheric CO2 into plant biomass. Despite the 
importance of GPP:
v There is a large uncertainty in current model based GPP assessments that 

contributes to its spatial and temporal variability, and climate sensitivity. 
vThe effect of climate and its role on long term trend in ecosystem productivity 

is not well assessed yet. 
We used GIMMS-3g long term FPAR record along with reanalysis data from 
MERRA-2, to model GPP from 1982 to 2016 using an improved Light Use 
Efficiency (LUE) model. 

vStatic LUEmax predefined for each biome types in LUE models has been known 
as the main source of uncertainty in these models.

vBased on these models, plants in a biome background matrix operate at their 
maximum capacity in up-taking atmospheric CO2 and converting that into 
biomass.

vIn order to improve the biome homogeneity assumption of ecosystem 
processes in the LUE models, we used global carbon flux towers from the 
FLUXNET network to estimate the optimum LUE (LUEopt) at each tower site.

vUsing a selection of environmental explanatory variables such as Max and Min 
FPAR, average annual SIF from GOME-2, and long term average annual 
temperature, we extrapolated LUEopt observations into global scales using a 
machine learning method. Max and Min annual FPAR from 1982-2016 was used 
to create dynamic LUEopt information. 

Introduction

Methodology

Results

Summary

Location of 
global flux tower 
sites used for 
estimation of 
LUEopt. Tower 
sites are overlaid 
on a global land 
cover map (MODIS 
MCD12C1-Type2). 
The FLUXNET 
tower sites include
95 training sites 
and 54 validation 
sites.

Boxplot showing the 
variability in flux tower 
derived LUEopt for 
different land cover 
classes. The number above 
each boxplot shows the total 
number of tower sites used 
to represent each land cover 
class, and the red dots 
denote the maximum light 
use efficiency used in the 
current version of the MODIS 
MOD17 product. 

Anomaly in global GPP from 1982-2016. 

vWe provided the largest improvements in the LUE model since it development in 
late 1990s.

vBased on the new GPP model. the increasing trend in GPP has been offset by 
declining carbon uptake in tropical forests. 

vThe reduction rate of GPP in tropical forest, that account for about a quarter of 
global biomass and are responsible for one third of the global carbon flux, is 
alarming.

vThirty five-year annual linear 
trend in GPP shows that in 80% 
of the vegetated land area GPP 
shows increasing trends up to 20 
gC m-2 yr-1 (P < 0.05).

vThe GPP of northern latitude 
ecosystems (+45ºN) after the 
year 2000 on average has 
increased by 50 gC m-2, which is 
consistent with observation of 
increase in shrub dominance in 
tundra.

vIn the northern latitudes after 
the mid-1990s (+45ºN) GPP 
started to increase by 0.5-1.5 Pg
compared to 35-year average for 
the region.

vThe northern ecosystems GPP increase is highly related to increase in air 
temperature and changes in FPAR.

vThe annual GPP in the Amazon has started to decline after the year 2004.
vThe increase in VPD of Amazonian tropical forests corresponds to a decreasing 

trend in annual GPP.

Trend in annual GPP [gC m-2 yr-1]

http://www.nasa.gov/
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Results: CARDAMOM is able to reproduce GRACE data

Summary and next steps

Introduction

Methods: from one to two water buckets

With large uncertainty

1) Calculate GPP: GPP = GPPmax x H2Ostress

2) Calculate ET, based on:     GPP x VPD/ET = constant

3) Update PAW and PUW: !"#$%& = !"#$ + !$ − *$ − +,$ -.
!/#$%& = !/#$ + 0*$ − *′$ -.

23.ℎ *$ = 5!"#$6 578 *$′ = 9!/#$6

Inherent water use efficiency

Runoff coming from PAW bucket

Links between GPP, ET and water storage:

MET driver

CARDAMOM EWT vs. GRACE EWT 

-

-

-

With 6 parameters being optimized:
- Initial condition for PAW and PUW - Fraction of runoff that goes to PUW
- Runoff coeff for PAW and PUW - Water use efficiency

R2 = 0.76
RMSE = 96.3 mm

R2 = 0.80
RMSE = 51.4 mm

Savanna pixel :Southern Africa
25.25E, 18.25S 

Wet tropics pixel :Amazon
70.25W, 6.25S 

A number of land surface models already try to represent the temporal evolution of Carbon (C) and/or water (H2O) state variables, but none of them
explicitly uses observations of equivalent water thickness (EWT) to constrain state variables and process controls on belowground water and its impact on the
overlying vegetation.
• We investigate the added value of temporal constraints on C and H2O cycles using GRACE (Gravity Recovery And Climate Experiment) water storage data. 
• We use the CARbon DAta-MOdel fraMework (CARDAMOM) to represent the evolution of C and H2O state variables and associated processes (Bloom et al., 

2016). 
• We test our model in key pixels and in the Amazon basin

CARDAMOM was modified to account for plant unavailable water (PUW), which, together with plant available water (PAW), can be related to the total water
dynamics provided by GRACE.

H2O Fluxes
P = Precipitation
R = Runoff
ET = Evapotranspiration

-

-

-

• CARDAMOM can reproduce seasonal and inter annual variations of GRACE data in amazon river basin
• There is a tradeoff between EWT and GPP, highlighting that some mechanisms are not well represented by the model
• Gridded Runoff will be ingested in a river routing model and compared to river gauges for validation (Yamazaki et al., 2011)
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Pixel level examples Maps of the Amazon basin

Carbon (C) Fluxes
GPP = Gross Primary Production Ra = Autotrophic Respiration   Rh = Heterotrophic Respiration   NPP = Net Primary Production (GPP-Ra)

EWT GRACE EWT GRACE
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We find ecosystem responses to warmer and drier environmental conditions as observed by SIF and transpiration from a
MODIS-driven ET algorithm show distinct responses across different eco-climatic regions.  

This work directly addresses key science goals of SMAP and OCO-2 to 
understand the processes that link the terrestrial water, energy, and carbon
cycles in order to build better models to predict carbon sinks in the future. 
Here, satellite observations reveal many Earth system models over-estimate 
strength of the carbon and water cycle linkage in the tropics relative to 
observations. Further, analyses on the fraction of diffuse radiation and the 
impact of short-term perturbations in controlling environmental variables offers 
a path towards refining model structure or parameterizations to address these 
limitations. 

For water and temperature limited regions, the carbon and water ecosystem responses are tightly coupled (Left). Space-for-time analysis reveals ecosystems increase 
water-use-efficiency under extreme perturbations (Center). In wet tropical regions, we find evidence that the amount of diffuse and direct radiation may help explain 
divergence in these cycles (Right).
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Results

Discussion

Background
Plants link the carbon and water cycles through their control on photosynthesis 
and transpiration. Under a changing climate how plants respond to changes in 
water availability, temperature, and cloud cover remains an open science 
question. This open question largely impacts the uncertainty of climate 
projections.
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OCO-2 solar induced fluorescence, SMAP soil moisture, and a MODIS-driven 
evapotranspiration model provide coincident observations to study changes in 
carbon and water cycles from space. We diagnose how regions that 
experienced hotter and drier conditions responded to regulate carbon uptake 
and water loss.
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Sensitivity of longwave radar backscatter to soil freezing process in Arctic tundra
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1. Background 

2. Methods 

We simulated P-band radar backscatter using a coupled 
modelling framework (Fig. 2), which includes a permafrost 
hydrology process model (Yi et al. 2019) and radar scattering 
model (Chen et al. 2019). 
§ A key challenge is to accurately represent thermal, hydraulic

and dielectric profiles in highly organic tundra soils.
§ A new organic soil parameterization (Fig. 3) was developed

(Chen et al. in Prep.) to harmonize key parameters common
to both models.

3. Sensitivity of soil dielectric constant to soil organic carbon (SOC) profile

4. P-band radar backscatter sensitivity to active layer freezing

Reference:
1. Yi, Y., Kimball, J.S., Chen, R.H., Moghaddam, M., and Miller, C.E.: Sensitivity of active layer freezing process to snow 

cover in Arctic Alaska, The Cryosphere, 2019.
2. Chen, R.H., A. Tabatabaeenejad, and M. Moghaddam. Retrieval of Permafrost Active Layer Properties Using Time-Series 

P-Band Radar Observations, IEEE Trans. Geosci. Remote Sens., 2019.

The contribution of cold-season
soil respiration to the Arctic-boreal
carbon cycle and its potential
feedback to global climate remain
poorly quantified, partly due to a
poor understanding of soil
moisture variation and its effects
on the seasonal freezing and
thawing (F/T) of the active layer in
permafrost landscapes.
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Fig. 5 Seasonality of model simulated radar backscatter vs AirMOSS data for two dominant Alaskan North 
Slope tundra types (Dwarf scrub vs grassland). Model simulations were conducted at PM (grassland) and HV 
(Dwarf scrub) sites from 2014 to 2017 (INC = 40º). AirMOSS data were averaged from all pixels with INC 
ranging from 35º to 45º. Dwarf scrub dominates at Ivotuk and dhorse lines; grassland dominates in atqasuk  
and dhorse lines. 

Fig. 6 Model simulated radar backscatter sensitivity to soil frozen depth during early cold season at PM and 
HV sites. Both the model simulations and detection of soil frozen depth were based on in-situ soil dielectric 
data. 

Fig. 2 The coupled soil-radar modeling framework in which the soil
process model generates an initial soil F/T and dielectric profile for the
radar scattering model; in-situ dielectric or radar backscatter data are
used to optimize key common soil parameters.

Fig. 4 Model vs in-situ soil dielectric constant profile at Prudhoe Meadow (PM, a-c, more decomposed 
SOC), and Happy Valley (HV, d-f, less decomposed SOC) sites located in dhorse transect (Fig. 1). 

Fig. 1 AirMOSS flight lines from 
Alaska ABoVE campaign. 

kg C/m2

Conclusions: 
§ P-band radar is sensitive to changes in soil active layer liquid water content, 

and can be an effective indicator of active layer frozen depth during early winter. 
§ Accounting for both total soil carbon content and condition is needed to 

accurately simulate seasonal wetting and drying of active layer.

§ Longwave radar can potentially provide useful information on 
subsurface soil properties regulating the active layer F/T 
process.  

§ We investigate the sensitivity of P-band (430 MHz) radar 
data to active layer soil freezing using a data-modeling 
framework. 

Fig. 3 Simulated change in key tundra soil parameters to varying soil 
organic matter (SOM) levels (a-d).    

(a) (b)

(c) (d)
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Ø The 2017 SSE in Guerrero, Mexico was superimposed by aseismic 
afterslip from the 2017 Puebla and the 2018 Oaxaca earthquakes

Ø The combined slip on the fault from the SSE and afterslip was 
equivalent to a Mw 7.1-7.2 earthquake

Ø Incorporating tropospheric noise correction methods improves the 
detection threshold for slow slip events from InSAR, and 
complements observations from other geodetic datasets. 

InSAR and GNSS Time-series for Observing Slow-Slip 
Events along the Mexican Subduction Zone

Author: Jeremy Maurer (334H)
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Poster No. EA-22  

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

www.nasa.gov

Copyright 2019.  All rights reserved.

National Aeronautics and  
Space Administration

Slow-slip events (SSEs) release stress build-up just like earthquakes. 
Unlike earthquakes, SSEs do not cause notable shaking, and last from 
weeks to months rather than seconds. Although not dangerous 
themselves, SSEs do change the stress field and can potentially trigger 
a devastating earthquake. The inter-relation between slow-slip events 
and earthquakes is not well understood and an active research topic 
within the solid earth community.

Background: SSEs occur every 3-4 years near Guerrero, Mexico, with 
the most recent starting in 2017, during which the 2017 Puebla and 
2018 Oaxaca earthquakes occurred. Key questions involve: Did the SSE 
trigger the earthquakes, or vice versa? How will these events impact 
the next large earthquake on the Mexico subduction zone?

Problem: GNSS data is sparse in the region, and can be 
complemented with dense InSAR observations. However, InSAR is 
challenged by atmospheric noise 5x larger than the SSE signal. 

Objective: Our objective is to complement available GNSS data with 
Sentinel-1 InSAR time series with tropospheric noise removed to model 
slip on the subduction zone during the SSE 

Introduction

Methods Fault slip: We find that the 2017 Puebla and 2018 Oaxaca 
earthquakes triggered additional aseismic slip (afterslip) on the fault. 
We estimate total slip from the SSE and afterslip and find a total 
moment release corresponding to an MW 7.1-7.2 earthquake. 
Although GNSS data has lower noise, we find that the additional data 
density from InSAR greatly improves the model resolution, especially 
outside the area with GNSS data.

Results
Observed displacements: We used GIAnT to perform a time-series 
analysis for each track and estimated cumulative offsets for the 2017 
SSE, shown below for track 78. 

Sentinel-1: We used JPL’s ISCE software to process the data up to 
interferogram level, and reduced tropospheric noise using a newly 
developed ray-tracing algorithm leveraging data from the European 
Centre for Medium-Range Weather Forecasts.

Original interferogram: (left), 
Troposphere estimate (center), 
Corrected interferogram (right). 
6.28 radians = 28 mm in line-of-
sight displacement 

GNSS: We processed data from 19 stations, estimated and removed the 
inter-SSE steady velocity, and computed SSE offsets from the residuals. 

Overview of the Guerrero, Mexico study region, with the Sentinel-1 tracks 
shown (arrows are look directions) and cumulative SSE offsets from track 78. 

GNSS time-series from station CAYA, showing offsets from the 2014 and 
2017 SSEs, and the time of regional earthquakes (dashed lines). 

Top-down view of the fault geometry (triangle 
patches) with the coastline in black. 
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Coherence and Amplitude Analysis for Disaster Response 

Author: Jungkyo Jung (334K) and Sang-Ho Yun (334K)

Poster No. EA-23 

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

www.nasa.gov

Copyright 2019.  All rights reserved.

National Aeronautics and  
Space Administration

Introduction DPM1 vs. DPM2

Objective

Algorithm Design

5 km

Rapid imaging of damage caused by the natural disasters is becoming an increasingly
essential part of disaster management by response efforts. The Advanced Rapid
Imaging and Analysis (ARIA), a joint project between JPL and Caltech, has been
developing algorithms and a system to rapidly produce Damage Proxy Maps (DPMs)
from Synthetic Aperture Radar (SAR) observations. The algorithms and system were
successfully tested for a variety of natural disaster events including the Feb 2011
Christchurch Earthquake, 2013 Super typhoon Haiyan, 2015 Gorkha Earthquake1).,
2017 Hurricane Maria, and 2018 Camp & Woolsey Fires in California.
So far, DPM version 1, which is based on interferometric SAR coherence, has been

produced and delivered for response. DPM2, which is based on multi-temporal
coherence analysis, was further introduced to enhance the accuracy performance 2) 3).

DPM1 and DPM2, coherence-based methods, become less reliable over the pixels with
low coherence. This research aims to develop a generalized damage detection algorithm
applicable for forest area (low coherence area) using both amplitude and coherence of
multi-temporal SAR imagery.

COH 1-2 COH 2-3

COH 1-3 COH 2-4

COH 3-4

COH 3-5

Experimental Study Area

Experimental result for Hokkaido Landslide (2018)

DPM2

AMP #1 AMP #2 AMP 
#(N-3)

AMP
#(N-2)

AMP 
#(N-1)

AMP #N

DPM3

……..

COH
(N-2) – (N-1)

COH 
(N-1) – (N)

DPM1

…….. …….. ……..

DISASTER 
EVENT

Coherence Difference between Pre- and Co-pair

Multi-temporal Coherence Analysis based on 
Temporal decorrelation Model

Multi-temporal Amplitude Analysis based on Temporal behavior Model 
(seasonal and annual periodic signal)

SAR acquisitions :
Event Date :  September 06, 2018
Landslide trigger : 1) M6.7 Earthquake

2) Heavy precipitation due to Typhoon Jebi

1) Yun, S. H., Hudnut, K., Owen, S., Webb, F., Simons, M., Sacco, P., ... & Milillo, P. (2015). Rapid Damage Mapping for the 2015 M w 7.8 Gorkha Earthquake Using
Synthetic Aperture Radar Data from COSMO–SkyMed and ALOS-2 Satellites. Seismological Research Letters, 86(6), 1549-1556.

2) Jung, J., Kim, D. J., Lavalle, M., & Yun, S. H. (2016). Coherent change detection using InSAR temporal decorrelation model: A case study for volcanic ash detection. IEEE
Transactions on Geoscience and Remote Sensing, 54(10), 5765-5775.

3) Jung, J., Yun, S. H., Kim, D. J., & Lavalle, M. (2017). Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric–Interferometric SAR
Data. IEEE Transactions on Geoscience and Remote Sensing, 56(3), 1520-1532.

Hokkaido Landslide (Sep, 2018)
DPM 3 result (ALOS 2, Ultra Fine)
16 x 16 multi-looking ( 30m x 30m)

DPM1 (Sentinel-1)
Tubbs Fire, 2017

DPM2 (Sentinel-1)
Tubbs Fire, 2017

DPM1 (UAVSAR)
Lake Fire, 2015

DPM2 (UAVSAR)
Lake Fire, 2015

Performance Test (ROC curve)

• Hundreds of landslides
• Planar and Spoon types
• Pumice and ash layer

with thickness of 4-5 m

Landslide map derived from 
Aerial Photo (Sep, 2018)

Hybrid 
Method using 
multi-temporal 
coherence and 
amplitude 
analysis

Achievements and Future Study
• DPM3 shows the highest accuracy among the algorithms by detecting the damages

even over pixels with low coherence (temporal decorrelation of forest).
• DPM1 is cheap and fast (1-2 days), and DPM2 and 3 are computationally expensive

(~2weeks).

• ARIA system’s cloud computing can dramatically reduce the computation time.
• Rapid access to historical SAR data is required for timely production of DPM2/3
• Using additional polarizations (i.e. HV/VV) can further improve the performance.

Reference
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Our approach: Sequential time series:
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Motivation: Methods:
•Created coregistered SLCs with 
ISCE processing software.
•Used adaptive multi-looking for 
noise reduction and coherence 
estimation (similar to Ferretti et al., 
2011).
•Processed data in batches using the 
Sequential EVD (inspired by Ansari 
et al., 2017)
•Applied CANDIS atmospheric 
correction (Tymofyeyeva and Fialko, 
2015)
•Decomposed data from two lines of 
sight into vertical and fault-parallel 
components (e.g., Tymofyeyeva and 
Fialko 2018)

Figure: Example of an amplitude image over San Francisco, filtered using adaptive multilooking. Panel (a)
shows the original image, and panel (b) shows the filtered image. Sharp features and structures are preserved,
while speckle noise in smoother areas is reduced.

Time Series:

Displacements:

Conclusions:

Figure: Cumulative time series from 2014-2019 for descending track 42 over the Concord fault, Eastern Bay
Area. Comparison between our time series processing approach (a) and cumulative time series computed by
adding up displacements from sequential interferograms (b). All displacements are in millimeters.

Figure (above): Fault-parallel and vertical
displacements derived using Sentinel-1 Tracks 42 and
35 during the time period between 2014-2019, on the
Concord fault.
Figure (left): Displacements inside a 800m-wide, 2km-
long profile across the Concord fault. The deformation
across the fault is not a sharp “step”, but rather a
gradient across a distance of about 400m, suggesting
either that the fault is locked from the surface to a depth
approximately equal to the width of the distributed zone
(which is likely unphysical), or that the distributed shear
zone is a consequence of multiple dislocations, a change
in material properties, or a bend in the fault relative to
the overall strike, as discussed earlier in this section.

Figure: Time series of displacements
on the Concord fault, at two points
marked by red and red circles in panel
(a). The red points in panel (b) are
cumulative displacements in
millimeters, corrected for the
atmospheric contribution using the
CANDIS method (Tymofyeyeva and
Fialko, 2015). The black crosses are
uncorrected time series, shown for
comparison.

• Understanding motions on the Concord fault (white square) is important, 
because an earthquake on this fault would have serious consequences for 
the Eastern Bay Area (see above).

• The purple “pins” in the map indicate the locations of continuously 
recording GPS stations. The coverage is reasonably dense, but there aren’t 
enough on the Concord fault to resolve localized fault motions.

•We apply adaptive multilooking and sequential EVD methods to the study of 
shallow fault creep on the Concord Fault in the Eastern San Francisco Bay 
Area, where continuous GPS stations and other geodetic instruments are not 
available close to the fault. 

•We use data from the European Sentinel-1 mission to observe a transient 
shallow creep event on the Concord fault.

•We are able to determine that the event began in the summer months of 
2017, with variable slip along the fault, and a peak cumulative slip amplitude 
of approximately 15 mm in the direction parallel to the fault trace.

http://www.nasa.gov/


Idealistic example of uncertainty-implementation cost 
pareto fronts under three system “configurations.”
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Considerations for the Design of Statistical Analyses of 
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Introduction

Illustrative Problem: Spatial Covariance 
Parameter Estimation
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𝓐 = {𝐽, 𝑁1, … , 𝑎0, … , 𝑏1, … , 𝑐0, … }
• define the system
• latency, bandwidth, etc.

𝓑 = {𝑛1, … , 𝑛𝐽,𝑚1, … ,𝑚𝐽, … }
• determined by design of 

methodology
𝓒 = {𝜑0(𝒎) ∝ 𝑝, 𝜑𝑗(𝑛𝑗) ∝ 𝑛89, … }

• computational complexity
Statistical Costs (Uncertainty)
Define an ”anticipated” variance as a function of 𝒏 = {𝑛1, … , 𝑛𝐽}.
• Estimate 𝑉𝑎𝑟(𝜽) using the information sandwich estimator, 𝐼𝑆(𝜽). 
• Integrate out dependence on individual spatial locations, 𝑆𝑛, and unknown 𝜽

using Monte Carlo integration.
𝐶𝑠𝑡𝑎𝑡(𝓑) = ∬ 𝐼𝑆(𝜽|𝑆𝑛) 𝑝(𝑆𝑛) 𝑝(𝜽)𝑑𝑆𝑛𝑑𝜽

Implementation Costs (Time)
Define 𝐶𝑖𝑚𝑝𝑙(𝓐,𝓑, 𝓒) = 𝑔(𝐶𝑐𝑜𝑚𝑚(𝓐,𝓑, 𝓒), 𝐶𝑐𝑜𝑚𝑝(𝓐,𝓑, 𝓒)), where
• At each server

𝐶𝑐𝑜𝑚𝑚 𝓐,𝓑, 𝓒 = 𝑎𝑗𝐼 𝑛𝑗 > 0 + 𝑏 𝑚8 and 𝐶𝑐𝑜𝑚𝑝(𝓐,𝓑, 𝓒) = 𝑐8𝜑𝑗(𝑛𝑗) ∝ 𝑐𝑗𝑛89

• At the user
𝐶𝑐𝑜𝑚𝑝(𝓐,𝓑, 𝓒) = 𝑐0𝜑0(𝒎) ∝ 𝑐0 𝐽𝑝

Large scale data analyses for Earth science typically involve the use of massive
data stored on different servers that do not necessarily share the same file
system. This motivates moving towards distributed data and compute systems
where the majority of computation is performed at the data site. In this setting,
analysts may be faced with a-priori decisions in designing a distributed analysis
that could result in a trade-off between various costs (computation/transmission
time and even of constructing the system, e.g. cloud computing) and inferential
uncertainties (bias, variance, etc.) in the estimates produced by the analysis.

Illustrative system-cost components for the simple data system.

Proposed Design Framework
For a given analysis objective, minimize 

Total Cost = implementation (time) + λ1 uncertainty +
λ2 system design (money) + …

over a set of possible designs (statistical, system) subject to budget and
uncertainty constraints.
To do this we need:
1. A computationally feasible 

methodology implementable 
in a distributed framework.

2. To quantify ALL relevant costs 
of performing the analysis.

3. Solve a highly constrained, 
typically nonlinear, multi-objective 
optimization problem.

Step 2: Defining and Quantifying the Cost Tradeoff

Step 3: Obtain Pareto-Optimal Set of Design Solutions

Assume we have spatial data 𝑌O,O, … , 𝑌P,QR stored separately on 𝑗 = 1,… , 𝐽 servers.

• 𝑁 = 𝑁1 +⋯ +𝑁𝐽 where 𝑁𝑗 is large.
• Model spatial dependence through a Gaussian process with 𝑝 unknown

parameters 𝜽, such that 𝒀 ~𝑀𝑉𝑁(𝑿𝜷, 𝜮(𝜽)) where 𝜮(𝜽) is a 𝑁 𝑥 𝑁 matrix.
• Objective is ML estimation of 𝜽, BUT evaluating the log-likelihood/gradient

exactly requires bringing all data together and performing 𝑂(𝑁3) operations at
every iteration of a numerical optimization algorithm.

Step 1: A Distributed Methodology
A simplified data system structure.

Approximate the likelihood by 
assuming data in different servers are 
independent.
• Log-likelihood is a sum of log-

likelihoods computed at each server, 
given a value of 𝜽.

• Numerical optimization can be 
achieved using distributed gradient 
descent without moving data.

• 𝑂(𝑁89) operations at each server and 
𝑂(𝑝) at user.

nth iteration of distributed gradient descent.

Design Questions
Distributed algorithm may still be outside a computational budget if 𝑁8 are large.
• How much data, 𝑛𝑗 < 𝑁8, should be used from each server?
• What is the tradeoff between implementation cost and uncertainty in estimates 

of 𝜽, depending on system design? 

Discussion
Determining an appropriate function for quantifying statistical cost (e.g. 
uncertainty) is dependent on the analysis objective and is not straightforward. 
• Statistics like variance are typically not easily optimizable functions in small 

number of parameters.
Realistic values of system parameters (e.g. 𝒂, 𝒃, 𝒄, etc.) are not easily obtained 
and are most likely dynamic.
• Moving towards quantifying these cost parameters in cloud systems.
Current work is focused on extending this framework for the problem of spatial 
data fusion of multiple remote sensing data products.
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BlocksSpatial Locations

1

2

3

4

5

6

7

8

9

ServersServers

Simulated spatial locations distributed to 9 “servers”.

Equal implementation time solutions. Equal uncertainty solutions.

Solutions under two system “designs”

Approximate pareto set of solutions of
min
de,…,dR

𝐶𝑠𝑡𝑎𝑡(𝓑) + 𝜆𝐶𝑖𝑚𝑝𝑙(𝓐,𝓑, 𝓒)

using the NSGA-II algorithm implemented 
in the R package mco.

http://www.nasa.gov/
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